When.com Web Search

  1. Ads

    related to: linear algebra hilbert matrix examples

Search results

  1. Results From The WOW.Com Content Network
  2. Hilbert matrix - Wikipedia

    en.wikipedia.org/wiki/Hilbert_matrix

    The Hilbert matrix is also totally positive (meaning that the determinant of every submatrix is positive). The Hilbert matrix is an example of a Hankel matrix. It is also a specific example of a Cauchy matrix. The determinant can be expressed in closed form, as a special case of the Cauchy determinant. The determinant of the n × n Hilbert ...

  3. Spectral theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_theory

    In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. [1] It is a result of studies of linear algebra and the solutions of systems of linear equations and their ...

  4. Normal operator - Wikipedia

    en.wikipedia.org/wiki/Normal_operator

    The class of normal operators is well understood. Examples of normal operators are unitary operators: N* = N −1; Hermitian operators (i.e., self-adjoint operators): N* = N; skew-Hermitian operators: N* = −N; positive operators: N = MM* for some M (so N is self-adjoint). A normal matrix is the matrix expression of a normal operator on the ...

  5. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    The notion of an orthonormal basis from linear algebra generalizes over to the case of Hilbert spaces. [89] In a Hilbert space H, an orthonormal basis is a family {e k} k ∈ B of elements of H satisfying the conditions: Orthogonality: Every two different elements of B are orthogonal: e k, e j = 0 for all k, j ∈ B with k ≠ j.

  6. Unitary operator - Wikipedia

    en.wikipedia.org/wiki/Unitary_operator

    This example can be expanded to R 3. In even higher dimensions, this can be extended to the Givens rotation. Reflections, like the Householder transformation. times a Hadamard matrix. In general, any operator in a Hilbert space that acts by permuting an orthonormal basis is unitary.

  7. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    The last property given above shows that if one views as a linear transformation from Hilbert space to , then the matrix corresponds to the adjoint operator of . The concept of adjoint operators between Hilbert spaces can thus be seen as a generalization of the conjugate transpose of matrices with respect to an orthonormal basis.