Search results
Results From The WOW.Com Content Network
2 QuanPol is a full spectrum and seamless (HF, MCSCF, GVB, MP2, DFT, TDDFT, CHARMM, AMBER, OPLSAA) QM/MM package integrated in GAMESS-US. [8] 10 Through CRYSCOR Archived 2019-12-26 at the Wayback Machine program.
Fourier transform infrared spectroscopy (FTIR) [1] is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-resolution spectral data over a wide spectral range.
The GAMESS (US) software also provides a comprehensive bonding analysis technique based on the Quasi-Atomic Orbital (QUAO) analysis proposed by professor Klaus Ruedenberg. The QUAO analysis provides a quasi-atomical perspective of bonding molecular orbitals in molecules. These are oriented orbitals which show the bonding direction.
Fourier-transform spectroscopy (FTS) is a measurement technique whereby spectra are collected based on measurements of the coherence of a radiative source, using time-domain or space-domain measurements of the radiation, electromagnetic or not.
There are two main approaches to two-dimensional spectroscopy, the Fourier-transform method, in which the data is collected in the time-domain and then Fourier-transformed to obtain a frequency-frequency 2D correlation spectrum, and the frequency domain approach in which all the data is collected directly in the frequency domain.
The schematic representation of a nano-FTIR system with a broadband infrared source. Nano-FTIR (nanoscale Fourier transform infrared spectroscopy) is a scanning probe technique that utilizes as a combination of two techniques: Fourier transform infrared spectroscopy (FTIR) and scattering-type scanning near-field optical microscopy (s-SNOM).
The software C++ library for LC-MS/MS data management and analysis offers an infrastructure for the development of mass spectrometry-related software. It allows peptide and metabolite quantification and supports label-free and isotopic-label-based quantification (such as iTRAQ and TMT and SILAC ) as well as targeted SWATH-MS quantification.
Spartan is a molecular modelling and computational chemistry application from Wavefunction. [2] It contains code for molecular mechanics, semi-empirical methods, ab initio models, [3] density functional models, [4] post-Hartree–Fock models, [5] and thermochemical recipes including G3(MP2) [6] and T1. [7]