Search results
Results From The WOW.Com Content Network
In 3-dimensional geometry and vector calculus, an area vector is a vector combining an area quantity with a direction, thus representing an oriented area in three dimensions. Every bounded surface in three dimensions can be associated with a unique area vector called its vector area .
A vector may also result from the evaluation, at a particular instant, of a continuous vector-valued function (e.g., the pendulum equation). In the natural sciences, the term "vector quantity" also encompasses vector fields defined over a two-or three-dimensional region of space, such as wind velocity over Earth's surface.
A vector pointing from A to B. In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector [1] or spatial vector [2]) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scaled to form a vector space.
The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .
The above formula says that the curl of a vector field at a point is the infinitesimal volume density of this "circulation vector" around the point. To this definition fits naturally another global formula (similar to the Kelvin-Stokes theorem) which equates the volume integral of the curl of a vector field to the above surface integral taken ...
Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.
Area plays an important role in modern mathematics. In addition to its obvious importance in geometry and calculus, area is related to the definition of determinants in linear algebra, and is a basic property of surfaces in differential geometry. [8]
Therefore, a more isotropic definition is commonly used, which consists as defining a projective space as the set of the vector lines in a vector space of dimension one more. As for affine spaces, projective spaces are defined over any field , and are fundamental spaces of algebraic geometry .