Search results
Results From The WOW.Com Content Network
A bimodal distribution would have two high points rather than one. The shape of a distribution is sometimes characterised by the behaviours of the tails (as in a long or short tail). For example, a flat distribution can be said either to have no tails, or to have short tails.
A simple bimodal distribution, in this case a mixture of two normal distributions with the same variance but different means. The figure shows the probability density function (p.d.f.), which is an equally-weighted average of the bell-shaped p.d.f.s of the two normal distributions. If the weights were not equal, the resulting distribution could ...
A visual depiction of a Poisson point process starting. In probability theory, statistics and related fields, a Poisson point process (also known as: Poisson random measure, Poisson random point field and Poisson point field) is a type of mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one ...
A simple bimodal distribution. Figure 3. A bimodal distribution. Note that only the largest peak would correspond to a mode in the strict sense of the definition of mode. In statistics, a unimodal probability distribution or unimodal distribution is a probability distribution which has a single peak.
The mode of a sample is the element that occurs most often in the collection. For example, the mode of the sample [1, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17] is 6. Given the list of data [1, 1, 2, 4, 4] its mode is not unique. A dataset, in such a case, is said to be bimodal, while a set with more than two modes may be described as multimodal.
The Alpha 21464 [37] (EV8, cancelled late in design) had a minimum branch misprediction penalty of 14 cycles. It was to use a complex but fast next-line predictor overridden by a combined bimodal and majority-voting predictor. The majority vote was between the bimodal and two gskew predictors.
There are many research areas involved with astroinformatics, such as data mining, machine learning, statistics, visualization, scientific data management, and semantic science. [7] Data mining and machine learning play significant roles in astroinformatics as a scientific research discipline due to their focus on "knowledge discovery from data ...
Original model of three phases of the process of technological change: Invention is followed by Innovation, which is followed by Diffusion. The Linear Model of Innovation was an early model designed to understand the relationship of science and technology that begins with basic research that flows into applied research, development and diffusion [1]