Search results
Results From The WOW.Com Content Network
It is possible to have multiple independent variables or multiple dependent variables. For instance, in multivariable calculus, one often encounters functions of the form z = f(x,y), where z is a dependent variable and x and y are independent variables. [8] Functions with multiple outputs are often referred to as vector-valued functions.
The basic form of a linear predictor function () for data point i (consisting of p explanatory variables), for i = 1, ..., n, is = + + +,where , for k = 1, ..., p, is the value of the k-th explanatory variable for data point i, and , …, are the coefficients (regression coefficients, weights, etc.) indicating the relative effect of a particular explanatory variable on the outcome.
If the goal is to explain variation in the response variable that can be attributed to variation in the explanatory variables, linear regression analysis can be applied to quantify the strength of the relationship between the response and the explanatory variables, and in particular to determine whether some explanatory variables may have no ...
Two regression lines (red) bound the range of linear regression possibilities. The shallow slope is obtained when the independent variable (or predictor) is on the x-axis. The steeper slope is obtained when the independent variable is on the y-axis. By convention, with the independent variable on the x-axis, the shallower slope is obtained.
The above equations are efficient to use if the mean of the x and y variables (¯ ¯) are known. If the means are not known at the time of calculation, it may be more efficient to use the expanded version of the α ^ and β ^ {\displaystyle {\widehat {\alpha }}{\text{ and }}{\widehat {\beta }}} equations.
Regression models predict a value of the Y variable given known values of the X variables. Prediction within the range of values in the dataset used for model-fitting is known informally as interpolation. Prediction outside this range of the data is known as extrapolation. Performing extrapolation relies strongly on the regression assumptions.
In statistics and in particular in regression analysis, a design matrix, also known as model matrix or regressor matrix and often denoted by X, is a matrix of values of explanatory variables of a set of objects. Each row represents an individual object, with the successive columns corresponding to the variables and their specific values for ...
Assume a two-dimensional random variable = (,) where X shall be considered as an explanatory variable, and Y as a dependent variable. Models of family 1 "explain" Y in terms of X, (;), whereas in family 0, X and Y are assumed to be independent.