Search results
Results From The WOW.Com Content Network
At a critical threshold p c, large clusters and long-range connectivity first appear, and this is called the percolation threshold. Depending on the method for obtaining the random network, one distinguishes between the site percolation threshold and the bond percolation threshold.
For site percolation on the square lattice, the value of p c is not known from analytic derivation but only via simulations of large lattices which provide the estimate p c = 0.59274621 ± 0.00000013. [7] A limit case for lattices in high dimensions is given by the Bethe lattice, whose threshold is at p c = 1 / z − 1 for a ...
In two dimensional square lattice percolation is defined as follows. A site is "occupied" with probability p or "empty" (in which case its edges are removed) with probability 1 – p; the corresponding problem is called site percolation, see Fig. 2. Percolation typically exhibits universality.
Percolation is the study of connectivity in random systems, such as electrical conductivity in random conductor/insulator systems, fluid flow in porous media, gelation in polymer systems, etc. [1] At a critical fraction of connectivity or porosity, long-range connectivity can take place, leading to long-range flow.
Conductivity near the percolation threshold in physics, occurs in a mixture between a dielectric and a metallic component. The conductivity σ {\displaystyle \sigma } and the dielectric constant ϵ {\displaystyle \epsilon } of this mixture show a critical behavior if the fraction of the metallic component reaches the percolation threshold .
C. CALPHAD; Charge ordering; Cloud point; Coffee ring effect; Computational Fluid Dynamics for Phase Change Materials; Condensation; Congruent melting; Continuous cooling transformation
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code
Percolation clusters become self-similar precisely at the threshold density for sufficiently large length scales, entailing the following asymptotic power laws: . The fractal dimension relates how the mass of the incipient infinite cluster depends on the radius or another length measure, () at = and for large probe sizes, .