Search results
Results From The WOW.Com Content Network
Sieve of Eratosthenes: algorithm steps for primes below 121 (including optimization of starting from prime's square). In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit.
Say that the actions carried out in step 1 are considered to consume time at most T 1, step 2 uses time at most T 2, and so forth. In the algorithm above, steps 1, 2 and 7 will only be run once. For a worst-case evaluation, it should be assumed that step 3 will be run as well. Thus the total amount of time to run steps 1–3 and step 7 is:
An array data structure can be mathematically modeled as an abstract data structure (an abstract array) with two operations get(A, I): the data stored in the element of the array A whose indices are the integer tuple I. set(A, I, V): the array that results by setting the value of that element to V. These operations are required to satisfy the ...
The following list contains syntax examples of how a range of element of an array can be accessed. In the following table: first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first)
In arrays, the new list and the remaining elements can share the array's space, but insertion is expensive, requiring shifting all following elements over by one. Shellsort is a variant of insertion sort that is more efficient for larger lists.
Arrays are useful mostly because the element indices can be computed at run time. Among other things, this feature allows a single iterative statement to process arbitrarily many elements of an array. For that reason, the elements of an array data structure are required to have the same size and should use the same data representation.
The array of Fibonacci numbers is defined where F k+2 = F k+1 + F k, when k ≥ 0, F 1 = 1, and F 0 = 1. To test whether an item is in the list of ordered numbers, follow these steps: Set k = m. If k = 0, stop. There is no match; the item is not in the array. Compare the item against element in F k−1. If the item matches, stop.
Because each possible vector can appear only once in a standard array some care must be taken during construction. A standard array can be created as follows: List the codewords of , starting with 0, as the first row; Choose any vector of minimum weight not already in the array. Write this as the first entry of the next row.