When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gravitational lensing formalism - Wikipedia

    en.wikipedia.org/wiki/Gravitational_lensing...

    Angles involved in a thin gravitational lens system. As shown in the diagram on the right, the difference between the unlensed angular position and the observed position is this deflection angle, reduced by a ratio of distances, described as the lens equation

  3. Lens - Wikipedia

    en.wikipedia.org/wiki/Lens

    This Newtonian form of the lens equation can be derived by using a similarity between triangles P 1 P O1 F 1 and L 3 L 2 F 1 and another similarity between triangles L 1 L 2 F 2 and P 2 P 02 F 2 in the right figure. The similarities give the following equations and combining these results gives the Newtonian form of the lens equation.

  4. Gravitational lens - Wikipedia

    en.wikipedia.org/wiki/Gravitational_lens

    One of Eddington's photographs of the 1919 solar eclipse experiment, presented in his 1920 paper announcing its success. Henry Cavendish in 1784 (in an unpublished manuscript) and Johann Georg von Soldner in 1801 (published in 1804) had pointed out that Newtonian gravity predicts that starlight will bend around a massive object [15] as had already been supposed by Isaac Newton in 1704 in his ...

  5. Thin lens - Wikipedia

    en.wikipedia.org/wiki/Thin_lens

    A lens may be considered a thin lens if its thickness is much less than the radii of curvature of its surfaces (d ≪ | R 1 | and d ≪ | R 2 |).. In optics, a thin lens is a lens with a thickness (distance along the optical axis between the two surfaces of the lens) that is negligible compared to the radii of curvature of the lens surfaces.

  6. List of optics equations - Wikipedia

    en.wikipedia.org/wiki/List_of_optics_equations

    Curvature radius of lens/mirror r, R: m [L] Focal length f: m [L] Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension Lens power ...

  7. Einstein radius - Wikipedia

    en.wikipedia.org/wiki/Einstein_radius

    For a source right behind the lens, θ S = 0, the lens equation for a point mass gives a characteristic value for θ 1 that is called the Einstein angle, denoted θ E. When θ E is expressed in radians, and the lensing source is sufficiently far away, the Einstein Radius, denoted R E, is given by =. [2]

  8. Numerical aperture - Wikipedia

    en.wikipedia.org/wiki/Numerical_aperture

    In microscopy, NA is important because it indicates the resolving power of a lens. The size of the finest detail that can be resolved (the resolution) is proportional to ⁠ λ / 2NA ⁠, where λ is the wavelength of the light. A lens with a larger numerical aperture will be able to visualize finer details than a lens with a smaller numerical ...

  9. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    So for a free particle, Newton's second law coincides with the geodesic equation and states that free particles follow geodesics, the extremal trajectories it can move along. If the particle is subject to forces F ≠ 0 , the particle accelerates due to forces acting on it and deviates away from the geodesics it would follow if free.