When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shapiro–Wilk test - Wikipedia

    en.wikipedia.org/wiki/ShapiroWilk_test

    The ShapiroWilk test tests the null hypothesis that a sample x 1, ..., x n came from a normally distributed population. The test statistic is = (= ()) = (¯), where with parentheses enclosing the subscript index i is the ith order statistic, i.e., the ith-smallest number in the sample (not to be confused with ).

  3. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    Kolmogorov–Smirnov test: this test only works if the mean and the variance of the normal distribution are assumed known under the null hypothesis, Lilliefors test: based on the Kolmogorov–Smirnov test, adjusted for when also estimating the mean and variance from the data, ShapiroWilk test, and; Pearson's chi-squared test.

  4. List of statistical tests - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_tests

    ShapiroWilk test: interval: univariate: 1: Normality test: sample size between 3 and 5000 [16] Kolmogorov–Smirnov test: interval: 1: Normality test: distribution parameters known [16] Shapiro-Francia test: interval: univariate: 1: Normality test: Simpliplification of ShapiroWilk test Lilliefors test: interval: 1: Normality test

  5. Shapiro–Francia test - Wikipedia

    en.wikipedia.org/wiki/Shapiro–Francia_test

    The Shapiro–Francia test is a statistical test for the normality of a population, based on sample data. It was introduced by S. S. Shapiro and R. S. Francia in 1972 as a simplification of the ShapiroWilk test .

  6. Wilks' theorem - Wikipedia

    en.wikipedia.org/wiki/Wilks'_theorem

    In that event, the likelihood test is still a sensible test statistic and even possess some asymptotic optimality properties, but the significance (the p-value) can not be reliably estimated using the chi-squared distribution with the number of degrees of freedom prescribed by Wilks. In some cases, the asymptotic null-hypothesis distribution of ...

  7. Martin Wilk - Wikipedia

    en.wikipedia.org/wiki/Martin_Wilk

    Martin Bradbury Wilk, OC (18 December 1922 – 19 February 2013) [1] [2] was a Canadian statistician, academic, and the former chief statistician of Canada. In 1965, together with Samuel Shapiro , he developed the ShapiroWilk test , which can indicate whether a sample of numbers would be unusual if it came from a Gaussian distribution .

  8. Multiple comparisons problem - Wikipedia

    en.wikipedia.org/wiki/Multiple_comparisons_problem

    The departure of the upper tail of the distribution from the expected trend along the diagonal is due to the presence of substantially more large test statistic values than would be expected if all null hypotheses were true. The red point corresponds to the fourth largest observed test statistic, which is 3.13, versus an expected value of 2.06.

  9. Mauchly's sphericity test - Wikipedia

    en.wikipedia.org/wiki/Mauchly's_sphericity_test

    Developed in 1940 by John W. Mauchly, [3] Mauchly's test of sphericity is a popular test to evaluate whether the sphericity assumption has been violated. The null hypothesis of sphericity and alternative hypothesis of non-sphericity in the above example can be mathematically written in terms of difference scores.