Ads
related to: calculus i initial value problems in discrete fractional calculus formula
Search results
Results From The WOW.Com Content Network
If the differ integral is initialized properly, then the hoped-for composition law holds. The problem is that in differentiation, information is lost, as with C in the first equation. However, in fractional calculus, given that the operator has been fractionalized and is thus continuous, an entire complementary function is needed.
In multivariable calculus, an initial value problem [a] (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain. Modeling a system in physics or other sciences frequently amounts to
The Cauchy formula for repeated integration, namely () = ()! (), leads in a straightforward way to a generalization for real n: using the gamma function to remove the discrete nature of the factorial function gives us a natural candidate for applications of the fractional integral operator as () = () ().
Discrete calculus is used for modeling either directly or indirectly as a discretization of infinitesimal calculus in every branch of the physical sciences, actuarial science, computer science, statistics, engineering, economics, business, medicine, demography, and in other fields wherever a problem can be mathematically modeled. It allows one ...
In mathematics, the Riemann–Liouville integral associates with a real function: another function I α f of the same kind for each value of the parameter α > 0.The integral is a manner of generalization of the repeated antiderivative of f in the sense that for positive integer values of α, I α f is an iterated antiderivative of f of order α.
Consider the problem of calculating the shape of an unknown curve which starts at a given point and satisfies a given differential equation. Here, a differential equation can be thought of as a formula by which the slope of the tangent line to the curve can be computed at any point on the curve, once the position of that point has been calculated.
Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus.
can be reduced to an initial value problem for an ordinary differential equation by applying the first part of the fundamental theorem of calculus. By differentiating both sides of the above with respect to the argument x , it is seen that the function F satisfies