When.com Web Search

  1. Ads

    related to: calculus i initial value problems in discrete fractional calculus formula

Search results

  1. Results From The WOW.Com Content Network
  2. Initialized fractional calculus - Wikipedia

    en.wikipedia.org/.../Initialized_fractional_calculus

    If the differ integral is initialized properly, then the hoped-for composition law holds. The problem is that in differentiation, information is lost, as with C in the first equation. However, in fractional calculus, given that the operator has been fractionalized and is thus continuous, an entire complementary function is needed.

  3. Initial value problem - Wikipedia

    en.wikipedia.org/wiki/Initial_value_problem

    In multivariable calculus, an initial value problem [a] (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain. Modeling a system in physics or other sciences frequently amounts to

  4. Fractional calculus - Wikipedia

    en.wikipedia.org/wiki/Fractional_calculus

    The Cauchy formula for repeated integration, namely () = ()! (), leads in a straightforward way to a generalization for real n: using the gamma function to remove the discrete nature of the factorial function gives us a natural candidate for applications of the fractional integral operator as () = () ().

  5. Discrete calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_calculus

    Discrete calculus is used for modeling either directly or indirectly as a discretization of infinitesimal calculus in every branch of the physical sciences, actuarial science, computer science, statistics, engineering, economics, business, medicine, demography, and in other fields wherever a problem can be mathematically modeled. It allows one ...

  6. Riemann–Liouville integral - Wikipedia

    en.wikipedia.org/wiki/Riemann–Liouville_integral

    In mathematics, the Riemann–Liouville integral associates with a real function: another function I α f of the same kind for each value of the parameter α > 0.The integral is a manner of generalization of the repeated antiderivative of f in the sense that for positive integer values of α, I α f is an iterated antiderivative of f of order α.

  7. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    Consider the problem of calculating the shape of an unknown curve which starts at a given point and satisfies a given differential equation. Here, a differential equation can be thought of as a formula by which the slope of the tangent line to the curve can be computed at any point on the curve, once the position of that point has been calculated.

  8. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus.

  9. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    can be reduced to an initial value problem for an ordinary differential equation by applying the first part of the fundamental theorem of calculus. By differentiating both sides of the above with respect to the argument x , it is seen that the function F satisfies