When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electron capture - Wikipedia

    en.wikipedia.org/wiki/Electron_capture

    In nuclear physics, beta decay is a type of radioactive decay in which a beta ray (fast energetic electron or positron) and a neutrino are emitted from an atomic nucleus. Electron capture is sometimes called inverse beta decay , though this term usually refers to the interaction of an electron antineutrino with a proton.

  3. Electron - Wikipedia

    en.wikipedia.org/wiki/Electron

    [34]: 364 [5] In the same year Emil Wiechert and Walter Kaufmann also calculated the e/m ratio but did not take the step of interpreting their results as showing a new particle, while J. J. Thomson would subsequently in 1899 give estimates for the electron charge and mass as well: e ~ 6.8 × 10 −10 esu and m ~ 3 × 10 −26 g [44] [45]

  4. Atomic electron transition - Wikipedia

    en.wikipedia.org/wiki/Atomic_electron_transition

    In atomic physics and chemistry, an atomic electron transition (also called an atomic transition, quantum jump, or quantum leap) is an electron changing from one energy level to another within an atom [1] or artificial atom. [2] The time scale of a quantum jump has not been measured experimentally.

  5. Aufbau principle - Wikipedia

    en.wikipedia.org/wiki/Aufbau_principle

    In atomic physics and quantum chemistry, the Aufbau principle (/ ˈ aʊ f b aʊ /, from German: Aufbauprinzip, lit. 'building-up principle'), also called the Aufbau rule, states that in the ground state of an atom or ion, electrons first fill subshells of the lowest available energy, then fill subshells of higher energy.

  6. Atomic physics - Wikipedia

    en.wikipedia.org/wiki/Atomic_physics

    It introduced the idea of quantized orbits for electrons, combining classical and quantum physics. Key Postulates of the Bohr Model. 1.Electrons Move in Circular Orbits: • Electrons revolve around the nucleus in fixed, circular paths called orbits or energy levels. •These orbits are stable and do not radiate energy. 2.Quantization of ...

  7. Electron excitation - Wikipedia

    en.wikipedia.org/wiki/Electron_excitation

    Within a semiconductor crystal lattice, thermal excitation is a process where lattice vibrations provide enough energy to transfer electrons to a higher energy band such as a more energetic sublevel or energy level. [3] When an excited electron falls back to a state of lower energy, it undergoes electron relaxation (deexcitation [4]).

  8. Rutherford scattering experiments - Wikipedia

    en.wikipedia.org/wiki/Rutherford_scattering...

    The prevailing model of atomic structure before Rutherford's experiments was devised by J. J. Thomson. [2]: 123 Thomson had discovered the electron through his work on cathode rays [3] and proposed that they existed within atoms, and an electric current is electrons hopping from one atom to an adjacent one in a series.

  9. Electron scattering - Wikipedia

    en.wikipedia.org/wiki/Electron_scattering

    Pictorial description of how an electron beam may interact with a sample with nucleus N, and electron cloud of electron shells K,L,M. Showing transmitted electrons and elastic/inelastically scattered electrons. SE is a Secondary Electron ejected by the beam electron, emitting a characteristic photon (X-Ray) γ.