Ad
related to: photon absorption cross section meaning in physics
Search results
Results From The WOW.Com Content Network
In physics, absorption cross-section is a measure of the probability of an absorption process. More generally, the term cross-section is used in physics to quantify the probability of a certain particle-particle interaction, e.g., scattering , electromagnetic absorption , etc. (Note that light in this context is described as consisting of ...
By recording the attenuation of light for various wavelengths, an absorption spectrum can be obtained. In physics, absorption of electromagnetic radiation is how matter (typically electrons bound in atoms) takes up a photon's energy—and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy). [1]
Schematic of energy levels involved in two photons absorption. In atomic physics, two-photon absorption (TPA or 2PA), also called two-photon excitation or non-linear absorption, is the simultaneous absorption of two photons of identical or different frequencies in order to excite an atom or a molecule from one state (usually the ground state), via a virtual energy level, to a higher energy ...
An absorption line is formed when an atom or molecule makes a transition from a lower, E 1, to a higher discrete energy state, E 2, with a photon being absorbed in the process. These absorbed photons generally come from background continuum radiation (the full spectrum of electromagnetic radiation) and a spectrum will show a drop in the ...
In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus.
To implement non-degenerate two photon excitation microscopy, two photon pulses of differing energies must be synchronized to interact with a specimen at the sample plane near-simultaneously. Due to the enhanced absorption cross section and VSL, more time is possible for excitation to occur, and thus perfect synchronization is unnecessary.
In particle physics, the Klein–Nishina formula gives the differential cross section (i.e. the "likelihood" and angular distribution) of photons scattered from a single free electron, calculated in the lowest order of quantum electrodynamics.
The probability of the photoelectric effect occurring is measured by the cross section of the interaction, σ. This has been found to be a function of the atomic number of the target atom and photon energy. In a crude approximation, for photon energies above the highest atomic binding energy, the cross section is given by: [66]