Search results
Results From The WOW.Com Content Network
Etching is a critically important process module in fabrication, and every wafer undergoes many etching steps before it is complete. For many etch steps, part of the wafer is protected from the etchant by a "masking" material which resists etching. In some cases, the masking material is a photoresist which has been patterned using photolithography.
The dry etch is then performed so that structured etching is achieved. After the process, the remaining photoresist has to be removed. This is also done in a special plasma etcher, called an asher. [14] Dry etching allows a reproducible, uniform etching of all materials used in silicon and III-V semiconductor technology. By using inductively ...
Indium and gallium are group III elements of the periodic table while arsenic is a group V element. Alloys made of these chemical groups are referred to as "III-V" compounds. InGaAs has properties intermediate between those of GaAs and InAs. InGaAs is a room-temperature semiconductor with applications in electronics and photonics.
Early semiconductor processes had arbitrary names for generations (viz., HMOS I/II/III/IV and CHMOS III/III-E/IV/V). Later each new generation process became known as a technology node [17] or process node, [18] [19] designated by the process' minimum feature size in nanometers (or historically micrometers) of the process's transistor gate ...
In this initial work, InP and GaAs were grown using gaseous group III and V alkyls. While group III elements were derived from the pyrolysis of the alkyls on the surface, the group V elements were obtained from the decomposition of the alkyls by bringing in contact with heated Tantalum (Ta) or Molybdenum (Mo) at 950-1200 °C.
InP is used in lasers, sensitive photodetectors and modulators in the wavelength window typically used for telecommunications, i.e., 1550 nm wavelengths, as it is a direct bandgap III-V compound semiconductor material. The wavelength between about 1510 nm and 1600 nm has the lowest attenuation available on optical fibre (about 0.2 dB/km). [12]
The lift-off process in microstructuring technology is a method of creating structures (patterning) of a target material on the surface of a substrate (e.g. wafer) using a sacrificial material (e.g. photoresist). It is an additive technique as opposed to more traditional subtracting technique like etching.
Briefly, the etching of silicon is a two-step process. First, the top surface of the silicon is converted into a soluble oxide by a suitable oxidizing agent(s). Then the resulting oxide layer is removed from the surface by dissolution in a suitable solvent, usually HF. This is a continuous process during the etch cycle.