Search results
Results From The WOW.Com Content Network
In thermodynamics, the phase rule is a general principle governing multi-component, multi-phase systems in thermodynamic equilibrium.For a system without chemical reactions, it relates the number of freely varying intensive properties (F) to the number of components (C), the number of phases (P), and number of ways of performing work on the system (N): [1] [2] [3]: 123–125
This equal area rule can also be derived by making use of the Helmholtz free energy. [24] In any event the Maxwell construction derives from the Gibbs condition of material equilibrium. However, even though g f = g g {\displaystyle g_{f}=g_{g}} is more fundamental it is more abstract than the equal area rule, which is understood geometrically.
Four eutectic structures: A) lamellar B) rod-like C) globular D) acicular. The eutectic solidification is defined as follows: [5] + This type of reaction is an invariant reaction, because it is in thermal equilibrium; another way to define this is the change in Gibbs free energy equals zero.
The existence of frigorific mixtures can be viewed as a consequence of the Gibbs phase rule, which describes the relationship at equilibrium between the number of components, the number of coexisting phases, and the number of degrees of freedom permitted by the conditions of heterogeneous equilibrium.
When pressure and temperature are variable, only of components have independent values for chemical potential and Gibbs' phase rule follows. The Gibbs−Duhem equation cannot be used for small thermodynamic systems due to the influence of surface effects and other microscopic phenomena. [2] The equation is named after Josiah Willard Gibbs and ...
A miscibility gap between isostructural phases may be described as the solvus, a term also used to describe the boundary on a phase diagram between a miscibility gap and other phases. [2] Thermodynamically, miscibility gaps indicate a maximum (e.g. of Gibbs energy) in the composition range. [3] [4]
Experimentally, phase lines are relatively easy to map due to the interdependence of temperature and pressure that develops when multiple phases form. Gibbs' phase rule suggests that different phases are completely determined by these variables. Consider a test apparatus consisting of a closed and well-insulated cylinder equipped with a piston.
Calculating the number of components in a system is necessary when applying Gibbs' phase rule in determination of the number of degrees of freedom of a system. The number of components is equal to the number of distinct chemical species (constituents), minus the number of chemical reactions between them, minus the number of any constraints ...