Search results
Results From The WOW.Com Content Network
The circuit on the left is satisfiable but the circuit on the right is not. In theoretical computer science, the circuit satisfiability problem (also known as CIRCUIT-SAT, CircuitSAT, CSAT, etc.) is the decision problem of determining whether a given Boolean circuit has an assignment of its inputs that makes the output true. [1]
Example Boolean circuit. The nodes are AND gates, the nodes are OR gates, and the nodes are NOT gates. In theoretical computer science, circuit complexity is a branch of computational complexity theory in which Boolean functions are classified according to the size or depth of the Boolean circuits that compute them.
In theoretical computer science, a circuit is a model of computation in which input values proceed through a sequence of gates, each of which computes a function. Circuits of this kind provide a generalization of Boolean circuits and a mathematical model for digital logic circuits. Circuits are defined by the gates they contain and the values ...
Philip Allen Lacovara and H.W. Perry both claim that the existence of a circuit split is "the single most important generalizable factor" that determines whether the Supreme Court will grant review of a case. [41] Indeed, justices sometimes cite the lack of a circuit split as a reason to deny review in a case. [42]
Just as the class NP-complete can be thought of as "probably intractable", so the class P-complete, when using NC reductions, can be thought of as "probably not parallelizable" or "probably inherently sequential". The parallel computer in the definition can be assumed to be a parallel, random-access machine . That is a parallel computer with a ...
A circuit has two complexity measures associated with it: size and depth. The size of a circuit is the number of gates in it, and the depth of a circuit is the length of the longest directed path in it. For example, the circuit in the figure has size six and depth two. An arithmetic circuit computes a polynomial in the following natural way.
Race condition in a logic circuit. Here, ∆t 1 and ∆t 2 represent the propagation delays of the logic elements. When the input value A changes from low to high, the circuit outputs a short spike of duration (∆t 1 + ∆t 2) − ∆t 2 = ∆t 1.
High-level synthesis (HLS), sometimes referred to as C synthesis, electronic system-level (ESL) synthesis, algorithmic synthesis, or behavioral synthesis, is an automated design process that takes an abstract behavioral specification of a digital system and finds a register-transfer level structure that realizes the given behavior.