Ad
related to: polynomial finder from roots
Search results
Results From The WOW.Com Content Network
Finding the real roots of a polynomial with real coefficients is a problem that has received much attention since the beginning of 19th century, and is still an active domain of research. Most root-finding algorithms can find some real roots, but cannot certify having found all the roots.
However, for polynomials specifically, the study of root-finding algorithms belongs to computer algebra, since algebraic properties of polynomials are fundamental for the most efficient algorithms. The efficiency and applicability of an algorithm may depend sensitively on the characteristics of the given functions.
which may increasingly become a concern as the degree of the polynomial increases. If the coefficients are real and the polynomial has odd degree, then it must have at least one real root. To find this, use a real value of p 0 as the initial guess and make q 0 and r 0, etc., complex conjugate pairs.
The Jenkins–Traub algorithm for polynomial zeros is a fast globally convergent iterative polynomial root-finding method published in 1970 by Michael A. Jenkins and Joseph F. Traub. They gave two variants, one for general polynomials with complex coefficients, commonly known as the "CPOLY" algorithm, and a more complicated variant for the ...
If x is a simple root of the polynomial (), then Laguerre's method converges cubically whenever the initial guess, (), is close enough to the root . On the other hand, when x 1 {\displaystyle x_{1}} is a multiple root convergence is merely linear, with the penalty of calculating values for the polynomial and its first and second derivatives at ...
Graeffe's method works best for polynomials with simple real roots, though it can be adapted for polynomials with complex roots and coefficients, and roots with higher multiplicity. For instance, it has been observed [ 2 ] that for a root x ℓ + 1 = x ℓ + 2 = ⋯ = x ℓ + d {\displaystyle x_{\ell +1}=x_{\ell +2}=\dots =x_{\ell +d}} with ...
The problem is to find the roots of the polynomial Λ(x) (over the finite field GF(q)): = + + + + The roots may be found using brute force: there are a finite number of x, so the polynomial can be evaluated for each element x i. If the polynomial evaluates to zero, then that element is a root.
Bairstow's approach is to use Newton's method to adjust the coefficients u and v in the quadratic + + until its roots are also roots of the polynomial being solved. The roots of the quadratic may then be determined, and the polynomial may be divided by the quadratic to eliminate those roots.