Ads
related to: zero element in multiplication chart template math worksheets answers 1st
Search results
Results From The WOW.Com Content Network
A zero morphism in a category is a generalised absorbing element under function composition: any morphism composed with a zero morphism gives a zero morphism. Specifically, if 0 XY : X → Y is the zero morphism among morphisms from X to Y , and f : A → X and g : Y → B are arbitrary morphisms, then g ∘ 0 XY = 0 XB and 0 XY ∘ f = 0 AY .
Zero is thus an absorbing element. The zero of any ring is also an absorbing element. For an element r of a ring R, r0 = r(0 + 0) = r0 + r0, so 0 = r0, as zero is the unique element a for which r − r = a for any r in the ring R. This property holds true also in a rng since multiplicative identity isn't required.
the group under multiplication of the invertible elements of a field, [1] ring, or other structure for which one of its operations is referred to as multiplication. In the case of a field F, the group is (F ∖ {0}, •), where 0 refers to the zero element of F and the binary operation • is the field multiplication, the algebraic torus GL(1).
Thus each row and column of the table is a permutation of all the elements in the group. This greatly restricts which Cayley tables could conceivably define a valid group operation. To see why a row or column cannot contain the same element more than once, let a, x, and y all be elements of a group, with x and y distinct.
For any element x in a ring R, one has x0 = 0 = 0x (zero is an absorbing element with respect to multiplication) and (–1)x = –x. If 0 = 1 in a ring R (or more generally, 0 is a unit element), then R has only one element, and is called the zero ring. If a ring R contains the zero ring as a subring, then R itself is the zero ring. [6]
The {0} object is a terminal object of any algebraic structure where it exists, like it was described for examples above. But its existence and, if it exists, the property to be an initial object (and hence, a zero object in the category-theoretical sense) depend on exact definition of the multiplicative identity 1 in a specified structure.