When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Time-invariant system - Wikipedia

    en.wikipedia.org/wiki/Time-invariant_system

    The system is time-invariant if and only if y 2 (t) = y 1 (t – t 0) for all time t, for all real constant t 0 and for all input x 1 (t). [1] [2] [3] Click image to expand it. In control theory, a time-invariant (TI) system has a time-dependent system function that is not a direct function of time.

  3. Linear time-invariant system - Wikipedia

    en.wikipedia.org/wiki/Linear_time-invariant_system

    The defining properties of any LTI system are linearity and time invariance.. Linearity means that the relationship between the input () and the output (), both being regarded as functions, is a linear mapping: If is a constant then the system output to () is (); if ′ is a further input with system output ′ then the output of the system to () + ′ is () + ′ (), this applying for all ...

  4. Rosenbrock system matrix - Wikipedia

    en.wikipedia.org/wiki/Rosenbrock_system_matrix

    In applied mathematics, the Rosenbrock system matrix or Rosenbrock's system matrix of a linear time-invariant system is a useful representation bridging state-space representation and transfer function matrix form. It was proposed in 1967 by Howard H. Rosenbrock. [1]

  5. Controllability - Wikipedia

    en.wikipedia.org/wiki/Controllability

    Example Let the system be an n dimensional discrete-time-invariant system from the formula: ϕ ( n , 0 , 0 , w ) = ∑ i = 1 n A i − 1 B w ( n − 1 ) {\displaystyle \phi (n,0,0,w)=\sum \limits _{i=1}^{n}A^{i-1}Bw(n-1)} (Where ϕ {\displaystyle \phi } (final time, initial time, state variable, restrictions) is defined as the transition matrix ...

  6. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.

  7. Transfer function - Wikipedia

    en.wikipedia.org/wiki/Transfer_function

    The term is often used exclusively to refer to linear time-invariant (LTI) systems. Most real systems have non-linear input-output characteristics, but many systems operated within nominal parameters (not over-driven) have behavior close enough to linear that LTI system theory is an acceptable representation of their input-output behavior.

  8. Exponential stability - Wikipedia

    en.wikipedia.org/wiki/Exponential_stability

    In control theory, a continuous linear time-invariant system (LTI) is exponentially stable if and only if the system has eigenvalues (i.e., the poles of input-to-output systems) with strictly negative real parts (i.e., in the left half of the complex plane). [1]

  9. Time-variant system - Wikipedia

    en.wikipedia.org/wiki/Time-variant_system

    A system undergoing slow time variation in comparison to its time constants can usually be considered to be time invariant: they are close to time invariant on a small scale. An example of this is the aging and wear of electronic components, which happens on a scale of years, and thus does not result in any behaviour qualitatively different ...