When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    In the long run, exponential growth of any kind will overtake linear growth of any kind (that is the basis of the Malthusian catastrophe) as well as any polynomial growth, that is, for all α: = There is a whole hierarchy of conceivable growth rates that are slower than exponential and faster than linear (in the long run).

  3. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    Symbolically, this process can be expressed by the following differential equation, where N is the quantity and λ is a positive rate called the exponential decay constant, disintegration constant, [1] rate constant, [2] or transformation constant: [3]

  4. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    Rutherford applied the principle of a radioactive element's half-life in studies of age determination of rocks by measuring the decay period of radium to lead-206. Half-life is constant over the lifetime of an exponentially decaying quantity, and it is a characteristic unit for the exponential decay equation. The accompanying table shows the ...

  5. Quadratic growth - Wikipedia

    en.wikipedia.org/wiki/Quadratic_growth

    In mathematics, a function or sequence is said to exhibit quadratic growth when its values are proportional to the square of the function argument or sequence position. "Quadratic growth" often means more generally "quadratic growth in the limit ", as the argument or sequence position goes to infinity – in big Theta notation , f ( x ) = Θ ...

  6. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.

  7. Relative growth rate - Wikipedia

    en.wikipedia.org/wiki/Relative_growth_rate

    Relative growth rate (RGR) is growth rate relative to size - that is, a rate of growth per unit time, as a proportion of its size at that moment in time. It is also called the exponential growth rate, or the continuous growth rate.

  8. Malthusian growth model - Wikipedia

    en.wikipedia.org/wiki/Malthusian_growth_model

    r = the population growth rate, which Ronald Fisher called the Malthusian parameter of population growth in The Genetical Theory of Natural Selection, [2] and Alfred J. Lotka called the intrinsic rate of increase, [3] [4] t = time. The model can also be written in the form of a differential equation: =

  9. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    Exponential growth or exponential decay—where the varaible change is proportional to the variable value—are thus modeled with exponential functions. Examples are unlimited population growth leading to Malthusian catastrophe , continuously compounded interest , and radioactive decay .