Search results
Results From The WOW.Com Content Network
Westwood+ is a sender-only modification of TCP Reno that optimizes the performance of TCP congestion control over both wired and wireless networks. TCP Westwood+ is based on end-to-end bandwidth estimation to set the congestion window and slow-start threshold after a congestion episode, that is, after three duplicate acknowledgments or a timeout.
The final main aspect of TCP is congestion control. TCP uses a number of mechanisms to achieve high performance and avoid congestive collapse, a gridlock situation where network performance is severely degraded. These mechanisms control the rate of data entering the network, keeping the data flow below a rate that would trigger collapse.
Explicit Congestion Notification – an extension to IP and TCP communications protocols that adds a flow control mechanism; TCP congestion control – various implementations of efforts to deal with network congestion; The correct endpoint behavior is usually to repeat dropped information, but progressively slow the repetition rate.
In data communications, flow control is the process of managing the rate of data transmission between two nodes to prevent a fast sender from overwhelming a slow receiver. Flow control should be distinguished from congestion control, which is used for controlling the flow of data when congestion has actually occurred. [1]
AIMD combines linear growth of the congestion window when there is no congestion with an exponential reduction when congestion is detected. Multiple flows using AIMD congestion control will eventually converge to an equal usage of a shared link. [ 1 ]
TCP fairness requires that a new protocol receive a no larger share of the network than a comparable TCP flow. This is important as TCP is the dominant transport protocol on the Internet, and if new protocols acquire unfair capacity they tend to cause problems such as congestion collapse .
Nagle's algorithm is a means of improving the efficiency of TCP/IP networks by reducing the number of packets that need to be sent over the network. It was defined by John Nagle while working for Ford Aerospace. It was published in 1984 as a Request for Comments (RFC) with title Congestion Control in IP/TCP Internetworks in RFC 896.
The throughput of a TCP communication is limited by two windows: the congestion window and the receive window. The congestion window tries not to exceed the capacity of the network (congestion control); the receive window tries not to exceed the capacity of the receiver to process data (flow control). The receiver may be overwhelmed by data if ...