When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Congruence modulo m is a congruence relation, meaning that it is an equivalence relation that is compatible with the operations of addition, subtraction, and multiplication. Congruence modulo m is denoted a ≡ b (mod m). The parentheses mean that (mod m) applies to the entire equation, not just to the right-hand side (here, b).

  3. Congruence relation - Wikipedia

    en.wikipedia.org/wiki/Congruence_relation

    The prototypical example of a congruence relation is congruence modulo on the set of integers. For a given positive integer n {\displaystyle n} , two integers a {\displaystyle a} and b {\displaystyle b} are called congruent modulo n {\displaystyle n} , written

  4. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Integers in the same congruence class a ≡ b (mod n) satisfy gcd(a, n) = gcd(b, n); hence one is coprime to n if and only if the other is. Thus the notion of congruence classes modulo n that are coprime to n is well-defined. Since gcd(a, n) = 1 and gcd(b, n) = 1 implies gcd(ab, n) = 1, the set of classes coprime to n is closed under ...

  5. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  6. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...

  7. Equivalence class - Wikipedia

    en.wikipedia.org/wiki/Equivalence_class

    For example, in modular arithmetic, for every integer m greater than 1, the congruence modulo m is an equivalence relation on the integers, for which two integers a and b are equivalent—in this case, one says congruent—if m divides ; this is denoted ().

  8. Triple bar - Wikipedia

    en.wikipedia.org/wiki/Triple_bar

    In number theory, it has been used beginning with Carl Friedrich Gauss (who first used it with this meaning in 1801) to mean modular congruence: () if N divides a − b. [ 10 ] [ 11 ] In category theory , triple bars may be used to connect objects in a commutative diagram , indicating that they are actually the same object rather than being ...

  9. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.