Search results
Results From The WOW.Com Content Network
The letters in the top row stand for months: January, February, etc. The bars and numbers convey the following information: The blue bars represent the average amount of precipitation (rain, snow etc.) that falls in each month. The blue numbers are the amount of precipitation in either millimeters (liters per square meter) or inches.
[24] [25] [26] Cherrapunji, situated on the southern slopes of the Eastern Himalaya in Shillong, India is one of the wettest places on Earth, with an average annual rainfall of 11,430 mm (450 in). The highest recorded rainfall in a single year was 22,987 mm (904.9 in) in 1861. The 38-year average at Mawsynram, Meghalaya, India is 11,873 mm (467 ...
The scale of dBZ values can be seen along the bottom of the image. dBZ is a logarithmic dimensionless technical unit used in radar. It is mostly used in weather radar, to compare the equivalent reflectivity factor (Z) of a remote object (in mm 6 per m 3) to the return of a droplet of rain with a diameter of 1 mm (1 mm 6 per m 3). [1]
= 4.1 R −0.21 mm −1 (equivalent to 41 R −0.21 cm −1 in the reference [4]), R being the rainrate in stratiform precipitation in millimeters per hour; D = raindrop diameter in mm; The units of N 0 are sometimes simplified to cm −4 but this removes the information that this value is calculated per cubic meter of air.
The standard United States National Weather Service rain gauge, developed at the start of the 20th century, consists of an 8 in (200 mm) funnel emptying into a graduated cylinder, 2.525 in (64.1 mm) in diameter, which fits inside a larger container that is 8 in (200 mm) in diameter and 20 in (510 mm) tall. If the rainwater overflows the ...
Rainfall forecasts can be verified a number of ways. Rain gauge observations can be gridded into areal averages, which are then compared to the grids for the forecast models. Weather radar estimates can be used outright, or corrected for rain gauge observations. [4] Several statistical scores can be based on the observed and forecast fields.
A rainfall simulator is used in soil science and hydrology to study how soil reacts to rainfall. Natural rainfall is difficult to use in experimentation because its timing and intensity cannot be reliably reproduced. Using simulated rainfall significantly speeds the study of erosion, surface runoff and leaching.
Moderate rain describes rainfall with a precipitation rate of between 2.6 millimetres (0.10 in) and 7.6 millimetres (0.30 in) per hour. Heavy rain describes rainfall with a precipitation rate above 7.6 millimetres (0.30 in) per hour, and violent rain has a rate more than 50 millimetres (2.0 in) per hour. [11]