Ads
related to: how to do pythagorean theorem
Search results
Results From The WOW.Com Content Network
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae , it is one of the basic relations between the sine and cosine functions.
The three sides of a right triangle are related by the Pythagorean theorem, which in modern algebraic notation can be written a 2 + b 2 = c 2 , {\displaystyle a^{2}+b^{2}=c^{2},} where c {\displaystyle c} is the length of the hypotenuse (side opposite the right angle), and a {\displaystyle a} and b {\displaystyle b} are the lengths of the legs ...
A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). [1] For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not. Every Pythagorean triple can be scaled to a unique primitive Pythagorean triple by dividing (a, b, c) by their greatest common divisor ...
The celebrated Pythagorean theorem (book I, proposition 47) states that in any right triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides that meet at a right angle).
The Pythagorean theorem, and hence this length, can also be derived from the law of cosines in trigonometry. In a right triangle, the cosine of an angle is the ratio of the leg adjacent of the angle and the hypotenuse. For a right angle γ (gamma), where the adjacent leg equals 0, the cosine of γ also equals 0.
Two New Orleans high school students have proven the Pythagorean Theorem using trigonometry without relying on circular reasoning. That should be impossible.
The Pythagorean theorem was known and used by the Babylonians and Indians centuries before Pythagoras, [216] [214] [217] [218] but he may have been the first to introduce it to the Greeks. [219] [217] Some historians of mathematics have even suggested that he—or his students—may have constructed the first proof. [220]