Search results
Results From The WOW.Com Content Network
The equations and their solutions are applicable from 0 Hz (i.e. direct current) to frequencies at which the transmission line structure can support higher order non-TEM modes. [2]: 282–286 The equations can be expressed in both the time domain and the frequency domain. In the time domain the independent variables are distance and time.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
A pendulum with a period of 2.8 s and a frequency of 0.36 Hz. For cyclical phenomena such as oscillations, waves, or for examples of simple harmonic motion, the term frequency is defined as the number of cycles or repetitions per unit of time.
Since d 2 = 0, the 3-form J satisfies the conservation of current (continuity equation): = = The current 3-form can be integrated over a 3-dimensional space-time region. The physical interpretation of this integral is the charge in that region if it is spacelike, or the amount of charge that flows through a surface in a certain amount of time ...
The electrical length of an antenna, like a transmission line, is its length in wavelengths of the current on the antenna at the operating frequency. [ 1 ] [ 12 ] [ 13 ] [ 4 ] : p.91–104 An antenna's resonant frequency , radiation pattern , and driving point impedance depend not on its physical length but on its electrical length. [ 14 ]
The current density inside round wire away from the influences of other fields, as function of distance from the axis is given by: [6]: 38 Current density in round wire for various skin depths. Numbers shown on each curve are the ratio of skin depth to wire radius. The curve shown with the infinity sign is the zero frequency (DC) case.
Localized time-varying charge and current densities can act as sources of electromagnetic waves in a vacuum. Maxwell's equations can be written in the form of a wave equation with sources. The addition of sources to the wave equations makes the partial differential equations inhomogeneous.
A schematic representation of long distance electric power transmission. From left to right: G=generator, U=step-up transformer, V=voltage at beginning of transmission line, Pt=power entering transmission line, I=current in wires, R=total resistance in wires, Pw=power lost in transmission line, Pe=power reaching the end of the transmission line, D=step-down transformer, C=consumers.