When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Constructible polygon - Wikipedia

    en.wikipedia.org/wiki/Constructible_polygon

    In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infinitely many constructible polygons, but only 31 with an odd number of sides are known.

  3. Heptadecagon - Wikipedia

    en.wikipedia.org/wiki/Heptadecagon

    Publication by C. F. Gauss in Intelligenzblatt der allgemeinen Literatur-Zeitung. As 17 is a Fermat prime, the regular heptadecagon is a constructible polygon (that is, one that can be constructed using a compass and unmarked straightedge): this was shown by Carl Friedrich Gauss in 1796 at the age of 19. [1]

  4. Constructible number - Wikipedia

    en.wikipedia.org/wiki/Constructible_number

    The points of may now be used to link the geometry and algebra by defining a constructible number to be a coordinate of a constructible point. [ 8 ] Equivalent definitions are that a constructible number is the x {\displaystyle x} -coordinate of a constructible point ( x , 0 ) {\displaystyle (x,0)} [ 9 ] or the length of a constructible line ...

  5. 65537-gon - Wikipedia

    en.wikipedia.org/wiki/65537-gon

    The regular 65537-gon (one with all sides equal and all angles equal) is of interest for being a constructible polygon: that is, it can be constructed using a compass and an unmarked straightedge. This is because 65,537 is a Fermat prime , being of the form 2 2 n + 1 (in this case n = 4).

  6. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    Some regular polygons are easy to construct with compass and straightedge; other regular polygons are not constructible at all. The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides, [11]: p. xi and they knew how to construct a regular polygon with double the number of sides of a given regular polygon.

  7. Category:Constructible polygons - Wikipedia

    en.wikipedia.org/.../Category:Constructible_polygons

    Articles related to constructible regular polygons, i.e. those amenable to compass and straightedge construction. Carl Friedrich Gauss proved that a regular polygon is constructible if its number of sides has no odd prime factors that are not Fermat primes, and no odd prime factors that are raised to a power of 2 or higher.

  8. 257-gon - Wikipedia

    en.wikipedia.org/wiki/257-gon

    The regular 257-gon (one with all sides equal and all angles equal) is of interest for being a constructible polygon: that is, it can be constructed using a compass and an unmarked straightedge. This is because 257 is a Fermat prime, being of the form 2 2 n + 1 (in this case n = 3).

  9. Triacontagon - Wikipedia

    en.wikipedia.org/wiki/Triacontagon

    The regular triacontagon is a constructible polygon, by an edge-bisection of a regular pentadecagon, and can also be constructed as a truncated pentadecagon, t{15}. A truncated triacontagon, t{30}, is a hexacontagon, {60}. One interior angle in a regular triacontagon is 168 degrees, meaning that one exterior angle would be 12°.