Search results
Results From The WOW.Com Content Network
In arithmetic and algebra, the fifth power or sursolid [1] of a number n is the result of multiplying five instances of n together: n 5 = n × n × n × n × n. Fifth powers are also formed by multiplying a number by its fourth power, or the square of a number by its cube. The sequence of fifth powers of integers is:
In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as b n, where b is the base and n is the power; often said as "b to the power n ". [1]
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for ...
The term hyperpower [4] is a natural combination of hyper and power, which aptly describes tetration. The problem lies in the meaning of hyper with respect to the hyperoperation sequence. When considering hyperoperations, the term hyper refers to all ranks, and the term super refers to rank 4, or tetration.
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value
A quincunx (/ ˈ k w ɪ n. k ʌ ŋ k s / KWIN-kunks) is a geometric pattern consisting of five points arranged in a cross, with four of them forming a square or rectangle and a fifth at its center. [1] The same pattern has other names, including "in saltire" or "in cross" in heraldry (depending on the orientation of the outer square), the five ...
In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or any expression. For example, in the polynomial + +, with variables and , the first two terms have the coefficients 7 and −3. The third term 1.5 is the constant coefficient.
In mathematics, Knuth's up-arrow notation is a method of notation for very large integers, introduced by Donald Knuth in 1976. [1]In his 1947 paper, [2] R. L. Goodstein introduced the specific sequence of operations that are now called hyperoperations.