When.com Web Search

  1. Ads

    related to: bi vectors in geometry worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Bivector - Wikipedia

    en.wikipedia.org/wiki/Bivector

    Parallel plane segments with the same orientation and area corresponding to the same bivector a ∧ b. [1]In mathematics, a bivector or 2-vector is a quantity in exterior algebra or geometric algebra that extends the idea of scalars and vectors.

  3. Comparison of vector algebra and geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_vector...

    The fundamental difference is that GA provides a new product of vectors called the "geometric product". Elements of GA are graded multivectors: scalars are grade 0, usual vectors are grade 1, bivectors are grade 2 and the highest grade (3 in the 3D case) is traditionally called the pseudoscalar and designated .

  4. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    The three vectors spanning a parallelepiped have triple product equal to its volume. (However, beware that the direction of the arrows in this diagram are incorrect.) In exterior algebra and geometric algebra the exterior product of two vectors is a bivector, while the exterior product of three vectors is a trivector. A bivector is an oriented ...

  5. Bilinear form - Wikipedia

    en.wikipedia.org/wiki/Bilinear_form

    In mathematics, a bilinear form is a bilinear map V × V → K on a vector space V (the elements of which are called vectors) over a field K (the elements of which are called scalars). In other words, a bilinear form is a function B : V × V → K that is linear in each argument separately: B(u + v, w) = B(u, w) + B(v, w) and B(λu, v) = λB(u, v)

  6. Biorthogonal system - Wikipedia

    en.wikipedia.org/wiki/Biorthogonal_system

    In mathematics, a biorthogonal system is a pair of indexed families of vectors ~ ~ such that ~, ~ =,, where and form a pair of topological vector spaces that are in duality, , is a bilinear mapping and , is the Kronecker delta.

  7. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    where s and t range over all real numbers, v and w are given linearly independent vectors defining the plane, and r 0 is the vector representing the position of an arbitrary (but fixed) point on the plane. The vectors v and w can be visualized as vectors starting at r 0 and pointing in different directions along the plane.

  8. Classical Hamiltonian quaternions - Wikipedia

    en.wikipedia.org/wiki/Classical_Hamiltonian...

    When a non-scalar quaternion is viewed as the quotient of two vectors, then the axis of the quaternion is a unit vector perpendicular to the plane of the two vectors in this original quotient, in a direction specified by the right hand rule. [59]

  9. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    Likewise, vectors whose components are contravariant push forward under smooth mappings, so the operation assigning the space of (contravariant) vectors to a smooth manifold is a covariant functor. Secondly, in the classical approach to differential geometry, it is not bases of the tangent bundle that are the most primitive object, but rather ...