When.com Web Search

  1. Ads

    related to: deep learning cs229 notes vtu 3rd ed

Search results

  1. Results From The WOW.Com Content Network
  2. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  3. Artificial Intelligence: A Modern Approach - Wikipedia

    en.wikipedia.org/wiki/Artificial_Intelligence:_A...

    AIMA gives detailed information about the working of algorithms in AI. The book's chapters span from classical AI topics like searching algorithms and first-order logic, propositional logic and probabilistic reasoning to advanced topics such as multi-agent systems, constraint satisfaction problems, optimization problems, artificial neural networks, deep learning, reinforcement learning, and ...

  4. List of engineering colleges affiliated to Visvesvaraya ...

    en.wikipedia.org/wiki/List_of_engineering...

    There are 219 engineering colleges affiliated to Visvesvaraya Technological University (VTU), which is in Belgaum in the state of Karnataka, India. [1] This list is categorised into two parts, autonomous colleges and non-autonomous colleges. Autonomous colleges are bestowed academic independence allowing them to form their own syllabus and ...

  5. Timeline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_machine_learning

    Deep learning spurs huge advances in vision and text processing. 2020s Generative AI leads to revolutionary models, creating a proliferation of foundation models both proprietary and open source, notably enabling products such as ChatGPT (text-based) and Stable Diffusion (image based). Machine learning and AI enter the wider public consciousness.

  6. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    An autoencoder consisting of an encoder and a decoder is a paradigm for deep learning architectures. An example is provided by Hinton and Salakhutdinov [ 24 ] where the encoder uses raw data (e.g., image) as input and produces feature or representation as output and the decoder uses the extracted feature from the encoder as input and ...

  7. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  8. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    The plain transformer architecture had difficulty converging. In the original paper [1] the authors recommended using learning rate warmup. That is, the learning rate should linearly scale up from 0 to maximal value for the first part of the training (usually recommended to be 2% of the total number of training steps), before decaying again.

  9. Information bottleneck method - Wikipedia

    en.wikipedia.org/wiki/Information_bottleneck_method

    The information bottleneck method is a technique in information theory introduced by Naftali Tishby, Fernando C. Pereira, and William Bialek. [1] It is designed for finding the best tradeoff between accuracy and complexity (compression) when summarizing (e.g. clustering) a random variable X, given a joint probability distribution p(X,Y) between X and an observed relevant variable Y - and self ...