Search results
Results From The WOW.Com Content Network
The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.
The two square roots of a negative number are both imaginary numbers, and the square root symbol refers to the principal square root, the one with a positive imaginary part. For the definition of the principal square root of other complex numbers, see Square root § Principal square root of a complex number.
121 6: Octal: 61 8: Duodecimal: 41 12: Hexadecimal: ... The sum of the digits of the square of 49 (2401) is the square root of 49. 49 is the first square where the ...
Square roots of negative numbers are called imaginary because in early-modern mathematics, only what are now called real numbers, obtainable by physical measurements or basic arithmetic, were considered to be numbers at all – even negative numbers were treated with skepticism – so the square root of a negative number was previously considered undefined or nonsensical.
Equivalently, a powerful number is the product of a square and a cube, that is, a number m of the form m = a 2 b 3, where a and b are positive integers. Powerful numbers are also known as squareful, square-full, or 2-full. Paul Erdős and George Szekeres studied such numbers and Solomon W. Golomb named such numbers powerful.
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
The left side of this identity describes a square number, while the right side describes a triangular number, so the result is a square triangular number. Falcón and Díaz-Barrero (2006) proved another identity relating Pell numbers to squares and showing that the sum of the Pell numbers up to P 4n +1 is always a square:
Square number 16 as sum of gnomons. In mathematics, a square number or perfect square is an integer that is the square of an integer; [1] in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 3 2 and can be written as 3 × 3.