Search results
Results From The WOW.Com Content Network
The overall chemical reaction is: CO 2 + Ca(OH) 2 → CaCO 3 + H 2 O + heat (in the presence of water) Each mole of CO 2 (44 g) reacts with one mole of calcium hydroxide (74 g) and produces one mole of water (18 g). The reaction can be considered as a strong-base-catalysed, water-facilitated reaction. [5]
Its solubility product K sp of 5.02 × 10 −6 at 25 °C, [1] its dissociation in water is large enough that its solutions are basic according to the following dissolution reaction: Ca(OH) 2 → Ca 2+ + 2 OH −. The solubility is affected by the common-ion effect. Its solubility drastically decreases upon addition of hydroxide or calcium sources.
Its usage varies from about 30 to 50 kilograms (65–110 lb) per ton of steel. The quicklime neutralizes the acidic oxides, SiO 2, Al 2 O 3, and Fe 2 O 3, to produce a basic molten slag. [10] Ground quicklime is used in the production of aerated concrete such as blocks with densities of ca. 0.6–1.0 g/cm 3 (9.8–16.4 g/cu in). [10]
3 (s) + 3 H 2 O (g) The net reaction being: 2LiOH(s) + CO 2 (g) → Li 2 CO 3 (s) + H 2 O (g) Lithium peroxide can also be used as it absorbs more CO 2 per unit weight with the added advantage of releasing oxygen. [12] In recent years lithium orthosilicate has attracted much attention towards CO 2 capture, as well as energy storage. [8]
The formula, Cu 2 CO 3 (OH) 2 shows that it is halfway between copper carbonate and copper hydroxide. Indeed, in the past the formula was written as CuCO 3 ·Cu(OH) 2. The crystal structure is made up of copper, carbonate and hydroxide ions. [36] The mineral atacamite is an example of a basic chloride. It has the formula Cu 2 Cl(OH) 3.
For many substances, the formation reaction may be considered as the sum of a number of simpler reactions, either real or fictitious. The enthalpy of reaction can then be analyzed by applying Hess' law, which states that the sum of the enthalpy changes for a number of individual reaction steps equals the enthalpy change of the overall reaction.
Carbonatation is a slow process that occurs in concrete where lime (CaO, or Ca(OH) 2 ) in the cement reacts with carbon dioxide (CO 2) from the air and forms calcium carbonate. The water in the pores of Portland cement concrete is normally alkaline with a pH in the range of 12.5 to 13.5.
Calcium peroxide or calcium dioxide is the inorganic compound with the formula CaO 2. It is the peroxide (O 2 2−) salt of Ca 2+. Commercial samples can be yellowish, but the pure compound is white. It is almost insoluble in water. [3]