Search results
Results From The WOW.Com Content Network
The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.
The Pauli matrices are involutory, meaning that the square of a Pauli matrix is the identity matrix. ... Circuit diagrams of controlled Pauli gates (from left to ...
Given a unit vector in 3 dimensions, for example (a, b, c), one takes a dot product with the Pauli spin matrices to obtain a spin matrix for spin in the direction of the unit vector. The eigenvectors of that spin matrix are the spinors for spin-1/2 oriented in the direction given by the vector. Example: u = (0.8, -0.6, 0) is a unit vector ...
In 1927, Pauli formalized the theory of spin using the theory of quantum mechanics invented by Erwin Schrödinger and Werner Heisenberg. He pioneered the use of Pauli matrices as a representation of the spin operators and introduced a two-component spinor wave-function. Pauli's theory of spin was non-relativistic.
However, stability of large systems with many electrons and many nucleons is a different question, and requires the Pauli exclusion principle. [15] It has been shown that the Pauli exclusion principle is responsible for the fact that ordinary bulk matter is stable and occupies volume.
When spinors are used to describe the quantum states, the three spin operators (S x, S y, S z,) can be described by 2 × 2 matrices called the Pauli matrices whose eigenvalues are ± ħ / 2 . For example, the spin projection operator S z affects a measurement of the spin in the z direction.
It satisfies anti-symmetry requirements, and consequently the Pauli principle, by changing sign upon exchange of two fermions. [1] Only a small subset of all possible many-body fermionic wave functions can be written as a single Slater determinant, but those form an important and useful subset because of their simplicity.
The Pauli group is generated by the Pauli matrices, and like them it is named after Wolfgang Pauli. The Pauli group on n {\displaystyle n} qubits, G n {\displaystyle G_{n}} , is the group generated by the operators described above applied to each of n {\displaystyle n} qubits in the tensor product Hilbert space ( C 2 ) ⊗ n {\displaystyle ...