Search results
Results From The WOW.Com Content Network
Polymorphism can be distinguished by when the implementation is selected: statically (at compile time) or dynamically (at run time, typically via a virtual function). This is known respectively as static dispatch and dynamic dispatch, and the corresponding forms of polymorphism are accordingly called static polymorphism and dynamic polymorphism.
The C++ examples in this section demonstrate the principle of using composition and interfaces to achieve code reuse and polymorphism. Due to the C++ language not having a dedicated keyword to declare interfaces, the following C++ example uses inheritance from a pure abstract base class .
Since C++ does not support late binding, the virtual table in a C++ object cannot be modified at runtime, which limits the potential set of dispatch targets to a finite set chosen at compile time. Type overloading does not produce dynamic dispatch in C++ as the language considers the types of the message parameters part of the formal message name.
For example, consider variables a, b and c of some user-defined type, such as matrices: a + b * c. In a language that supports operator overloading, and with the usual assumption that the * operator has higher precedence than the + operator, this is a concise way of writing: Add(a, Multiply(b, c))
This is true for programming languages such as Java. [10] Function overloading differs from forms of polymorphism where the choice is made at runtime, e.g. through virtual functions, instead of statically. Example: Function overloading in C++
Thus, calling f x, where f:: a-> b-> c, yields a new function f2:: b-> c that can be called f2 b to produce c. The actual type specifications can consist of an actual type, such as Integer, or a general type variable that is used in parametric polymorphic functions, such as a, or b, or anyType. So we can write something like: functionName:: a ...
Examples are templates in C++, and generic programming in Fortran and other languages, in conjunction with function overloading (including operator overloading). Code is said to be monomorphised , with specific data types deduced and traced through the call graph , in order to instantiate specific versions of generic functions , and select ...
C++ does not have the keyword super that a subclass can use in Java to invoke the superclass version of a method that it wants to override. Instead, the name of the parent or base class is used followed by the scope resolution operator. For example, the following code presents two classes, the base class Rectangle, and the derived class Box.