Search results
Results From The WOW.Com Content Network
Polymorphism can be distinguished by when the implementation is selected: statically (at compile time) or dynamically (at run time, typically via a virtual function). This is known respectively as static dispatch and dynamic dispatch, and the corresponding forms of polymorphism are accordingly called static polymorphism and dynamic polymorphism.
In object-oriented programming such as is often used in C++ and Object Pascal, a virtual function or virtual method is an inheritable and overridable function or method that is dispatched dynamically. Virtual functions are an important part of (runtime) polymorphism in object-oriented programming (OOP). They allow for the execution of target ...
The C++ examples in this section demonstrate the principle of using composition and interfaces to achieve code reuse and polymorphism. Due to the C++ language not having a dedicated keyword to declare interfaces, the following C++ example uses inheritance from a pure abstract base class .
When the program calls StoreRecord on the object, something needs to choose which behavior gets enacted. If one thinks of OOP as sending messages to objects, then in this example the program sends a StoreRecord message to an object of unknown type, leaving it to the run-time support system to dispatch the message to the right object. The object ...
In object-oriented programming, polymorphism more specifically refers to subtyping or subtype polymorphism, where a function can work with a specific interface and thus manipulate entities of different classes in a uniform manner. [61] For example, imagine a program has two shapes: a circle and a square. Both come from a common class called ...
In computer programming, operator overloading, sometimes termed operator ad hoc polymorphism, is a specific case of polymorphism, where different operators have different implementations depending on their arguments. Operator overloading is generally defined by a programming language, a programmer, or both.
The problem is that, while virtual functions are dispatched dynamically in C++, function overloading is done statically. The problem described above can be resolved by simulating double dispatch, for example by using a visitor pattern. Suppose the existing code is extended so that both SpaceShip and ApolloSpacecraft are given the function
C++ does not have the keyword super that a subclass can use in Java to invoke the superclass version of a method that it wants to override. Instead, the name of the parent or base class is used followed by the scope resolution operator. For example, the following code presents two classes, the base class Rectangle, and the derived class Box.