Search results
Results From The WOW.Com Content Network
A prismatic joint is a one-degree-of-freedom kinematic pair [1] which constrains the motion of two bodies to sliding along a common axis, without rotation; for this reason it is often called a slider (as in the slider-crank linkage) or a sliding pair. They are often utilized in hydraulic and pneumatic cylinders. [2]
Simple linkages are capable of producing complicated motion. The configuration of a system of rigid links connected by ideal joints is defined by a set of configuration parameters, such as the angles around a revolute joint and the slides along prismatic joints measured between adjacent links.
Line representations in robotics are used for the following: They model joint axes: a revolute joint makes any connected rigid body rotate about the line of its axis; a prismatic joint makes the connected rigid body translate along its axis line. They model edges of the polyhedral objects used in many task planners or sensor processing modules.
For each joint of the kinematic chain, an origin point q and an axis of action are selected for the zero configuration, using the coordinate frame of the base. In the case of a prismatic joint, the axis of action v is the vector along which the joint extends; in the case of a revolute joint, the axis of action ω the vector normal to the rotation.
A slider-crank linkage is a four-bar linkage with three revolute joints and one prismatic, or sliding, joint. The rotation of the crank drives the linear movement the slider, or the expansion of gases against a sliding piston in a cylinder can drive the rotation of the crank.
The system of six joint axes S i and five common normal lines A i,i+1 form the kinematic skeleton of the typical six degree-of-freedom serial robot. Denavit and Hartenberg introduced the convention that z-coordinate axes are assigned to the joint axes S i and x-coordinate axes are assigned to the common normals A i,i+1.
Repeated joints may be summarized by their number; so that joint notation for the SCARA robot can also be written 2RP for example. Joint notation for the parallel Gough-Stewart mechanism is 6-UPS or 6(UPS) indicating that it is composed of six identical serial limbs, each one composed of a universal U, active prismatic P and spherical S joint.
An example of a simple open chain is a serial robot manipulator. These robotic systems are constructed from a series of links connected by six one degree-of-freedom revolute or prismatic joints, so the system has six degrees of freedom. An example of a simple closed chain is the RSSR spatial four-bar linkage.