Search results
Results From The WOW.Com Content Network
In computing, CUDA (Compute Unified Device Architecture) is a proprietary [2] parallel computing platform and application programming interface (API) that allows software to use certain types of graphics processing units (GPUs) for accelerated general-purpose processing, an approach called general-purpose computing on GPUs.
Tensor cores: A tensor core is a unit that multiplies two 4×4 FP16 matrices, and then adds a third FP16 or FP32 matrix to the result by using fused multiply–add operations, and obtains an FP32 result that could be optionally demoted to an FP16 result. [12] Tensor cores are intended to speed up the training of neural networks. [12]
In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...
Tensor Processing Unit (TPU) is an AI accelerator application-specific integrated circuit (ASIC) developed by Google for neural network machine learning, using Google's own TensorFlow software. [2] Google began using TPUs internally in 2015, and in 2018 made them available for third-party use, both as part of its cloud infrastructure and by ...
The Tensor Cores use CUDA Warp-Level Primitives on 32 parallel threads to take advantage of their parallel architecture. [39] A Warp is a set of 32 threads which are configured to execute the same instruction. Since Windows 10 version 1903, Microsoft Windows provided DirectML as one part of DirectX to support Tensor Cores.
Nvidia released one non-consumer card under the new Volta architecture, the Titan V. Changes from the Titan XP, Pascal's high-end card, include an increase in the number of CUDA cores, the addition of tensor cores, and HBM2. Tensor cores are designed for deep learning, while high-bandwidth memory is on-die, stacked, lower-clocked memory that ...
Alphabet has also developed its own custom AI chips called TPUs (tensor processing units) with the help of Broadcom which can improve inference times and are more cost-efficient. This should help ...
CUDA Compute Capability 8.0 for A100 and 8.6 for the GeForce 30 series [7] TSMC's 7 nm FinFET process for A100; Custom version of Samsung's 8 nm process (8N) for the GeForce 30 series [8] Third-generation Tensor Cores with FP16, bfloat16, TensorFloat-32 (TF32) and FP64 support and sparsity acceleration. [9]