Search results
Results From The WOW.Com Content Network
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
Let = be an positive matrix: > for ,.Then the following statements hold. There is a positive real number r, called the Perron root or the Perron–Frobenius eigenvalue (also called the leading eigenvalue, principal eigenvalue or dominant eigenvalue), such that r is an eigenvalue of A and any other eigenvalue λ (possibly complex) in absolute value is strictly smaller than r, |λ| < r.
He was the first to use the German word eigen, which means "own", [6] to denote eigenvalues and eigenvectors in 1904, [c] though he may have been following a related usage by Hermann von Helmholtz. For some time, the standard term in English was "proper value", but the more distinctive term "eigenvalue" is the standard today.
The eigenvalues of A must also lie within the Gershgorin discs C j corresponding to the columns of A. Proof. Apply the Theorem to A T while recognizing that the eigenvalues of the transpose are the same as those of the original matrix. Example. For a diagonal matrix, the Gershgorin discs coincide with the spectrum. Conversely, if the Gershgorin ...
In numerical linear algebra, the Jacobi eigenvalue algorithm is an iterative method for the calculation of the eigenvalues and eigenvectors of a real symmetric matrix (a process known as diagonalization).
A generalized eigenvalue problem (second sense) is the problem of finding a (nonzero) vector v that obeys = where A and B are matrices. If v obeys this equation, with some λ , then we call v the generalized eigenvector of A and B (in the second sense), and λ is called the generalized eigenvalue of A and B (in the second sense) which ...
The remaining task has been reduced to finding the eigenvalues of a diagonal matrix plus a rank-one correction. Before showing how to do this, let us simplify the notation. We are looking for the eigenvalues of the matrix D + w w T {\displaystyle D+ww^{T}} , where D {\displaystyle D} is diagonal with distinct entries and w {\displaystyle w} is ...
The surviving diagonal elements, a i, j, are known as eigenvalues and designated with λ i in the equation, which reduces to =. The resulting equation is known as eigenvalue equation [4] and used to derive the characteristic polynomial and, further, eigenvalues and eigenvectors.