Search results
Results From The WOW.Com Content Network
Acetic acid (CH 3 COOH) and ammonium (NH + 4) are good examples. Acetic acid is extremely soluble in water, but most of the compound dissolves into molecules, rendering it a weak electrolyte. Weak bases and weak acids are generally weak electrolytes. In an aqueous solution there will be some CH 3 COOH and some CH 3 COO − and H +.
The strength of a conjugate base can be seen as its tendency to "pull" hydrogen protons towards itself. If a conjugate base is classified as strong, it will "hold on" to the hydrogen proton when dissolved and its acid will not split. If a chemical is a strong acid, its conjugate base will be weak. [3] An example of this case would be the ...
In chemistry, bond cleavage, or bond fission, is the splitting of chemical bonds. This can be generally referred to as dissociation when a molecule is cleaved into two or more fragments. [1] In general, there are two classifications for bond cleavage: homolytic and heterolytic, depending on the nature of the process
Ⓓ Rare earth metals are the group 3 metals scandium, yttrium, lutetium and the lanthanides; scandium is the only such metal shown as being capable of forming an oxyanion. Ⓔ Radioactive elements, such as the actinides, are harder to study. The known species may not represent the whole of what is possible, and the identifications may ...
The essence of Brønsted–Lowry theory is that an acid is only such in relation to a base, and vice versa. Water is amphoteric as it can act as an acid or as a base. In the image shown at the right one molecule of H 2 O acts as a base and gains H + to become H 3 O + while the other acts as an acid and loses H + to become OH −.
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.
In coordination chemistry, a ligand [a] is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electron pairs , often through Lewis bases . [ 1 ]
By definition, an acid is an ion or molecule that can donate a proton, and when introduced to a solution it will react with water molecules (H 2 O) to form a hydronium ion (H 3 O +), a conjugate acid of water. [4] For simplistic reasoning, the hydrogen ion (H +) is often used to abbreviate the hydronium ion.