When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Black-body radiation - Wikipedia

    en.wikipedia.org/wiki/Black-body_radiation

    For a black body (a perfect absorber) there is no reflected radiation, and so the spectral radiance is entirely due to emission. In addition, a black body is a diffuse emitter (its emission is independent of direction). Blackbody radiation becomes a visible glow of light if the temperature of the object is high enough. [19]

  3. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    Total emitted energy, , of a black body as a function of its temperature, . The upper (black) curve depicts the Stefan–Boltzmann law, M ∘ = σ T 4 {\displaystyle M^{\circ }=\sigma \,T^{4}} . The lower (blue) curve is total energy according to the Wien approximation , M W ∘ = M ∘ / ζ ( 4 ) ≈ 0.924 σ T 4 {\displaystyle M_{W}^{\circ ...

  4. Brightness temperature - Wikipedia

    en.wikipedia.org/wiki/Brightness_temperature

    Brightness temperature or radiance temperature is a measure of the intensity of electromagnetic energy coming from a source. [1] In particular, it is the temperature at which a black body would have to be in order to duplicate the observed intensity of a grey body object at a frequency ν {\displaystyle \nu } . [ 2 ]

  5. Black body - Wikipedia

    en.wikipedia.org/wiki/Black_body

    A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The radiation emitted by a black body in thermal equilibrium with its environment is called black-body radiation. The name "black body" is given because it absorbs all colors of light.

  6. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    The table on the right shows how the radiation of a black body at this temperature is partitioned, and also how sunlight is partitioned for comparison. Also for comparison a planet modeled as a black body is shown, radiating at a nominal 288 K (15 °C) as a representative value of the Earth's highly variable temperature.

  7. Radiance - Wikipedia

    en.wikipedia.org/wiki/Radiance

    Radiance is used to characterize diffuse emission and reflection of electromagnetic radiation, and to quantify emission of neutrinos and other particles. The SI unit of radiance is the watt per steradian per square metre (W·sr −1 ·m −2). It is a directional quantity: the radiance of a surface depends on the direction from which it is ...

  8. Wien's displacement law - Wikipedia

    en.wikipedia.org/wiki/Wien's_displacement_law

    Formally, the wavelength version of Wien's displacement law states that the spectral radiance of black-body radiation per unit wavelength, peaks at the wavelength given by: = where T is the absolute temperature and b is a constant of proportionality called Wien's displacement constant, equal to 2.897 771 955... × 10 −3 m⋅K, [1] [2] or b ...

  9. Ultraviolet catastrophe - Wikipedia

    en.wikipedia.org/wiki/Ultraviolet_catastrophe

    The ultraviolet catastrophe, also called the Rayleigh–Jeans catastrophe, was the prediction of late 19th century and early 20th century classical physics that an ideal black body at thermal equilibrium would emit an unbounded quantity of energy as wavelength decreased into the ultraviolet range.

  1. Related searches radiance of a body summary by chapter number 7 book club questions for black cake

    black body radiation chartblack body equilibrium
    black body radiation graph