When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Even and odd atomic nuclei - Wikipedia

    en.wikipedia.org/wiki/Even_and_odd_atomic_nuclei

    For mass numbers of 147, 151, and 209+, the beta-stable isobar of that mass number has been observed to undergo alpha decay. (In theory, mass number 143 to 155, 160 to 162, and 165+ can also alpha decay.) This gives a total of 101 stable nuclides with odd mass numbers.

  3. Valley of stability - Wikipedia

    en.wikipedia.org/wiki/Valley_of_stability

    The greater the number of protons, the more neutrons are required to stabilize a nuclide; nuclides with larger values for Z require an even larger number of neutrons, N > Z, to be stable. The valley of stability is formed by the negative of binding energy, the binding energy being the energy required to break apart the nuclide into its proton ...

  4. Atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Atomic_nucleus

    where A = Atomic mass number (the number of protons Z, plus the number of neutrons N) and r 0 = 1.25 fm = 1.25 × 10 −15 m. In this equation, the "constant" r 0 varies by 0.2 fm, depending on the nucleus in question, but this is less than 20% change from a constant.

  5. Stable nuclide - Wikipedia

    en.wikipedia.org/wiki/Stable_nuclide

    Stable even–even nuclides number as many as three isobars for some mass numbers, and up to seven isotopes for some atomic numbers. Conversely, of the 251 known stable nuclides, only five have both an odd number of protons and odd number of neutrons: hydrogen-2 , lithium-6, boron-10, nitrogen-14, and tantalum-180m.

  6. Beta decay - Wikipedia

    en.wikipedia.org/wiki/Beta_decay

    The two types of beta decay are known as beta minus and beta plus.In beta minus (β −) decay, a neutron is converted to a proton, and the process creates an electron and an electron antineutrino; while in beta plus (β +) decay, a proton is converted to a neutron and the process creates a positron and an electron neutrino. β + decay is also known as positron emission.

  7. Atomic number - Wikipedia

    en.wikipedia.org/wiki/Atomic_number

    The atomic number or nuclear charge number (symbol Z) of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons , this is equal to the proton number ( n p ) or the number of protons found in the nucleus of every atom of that element.

  8. NASA telescope captures the most detailed glimpse yet of the ...

    www.aol.com/news/nasa-telescope-captures-most...

    Scientists announced Tuesday that the telescope had given scientists the longest and most detailed glimpse thus far of the supermassive black hole at the center of our Milky Way galaxy.

  9. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    Radioactive decay is a random process at the level of single atoms. According to quantum theory, it is impossible to predict when a particular atom will decay, regardless of how long the atom has existed. [2] [3] [4] However, for a significant number of identical atoms, the overall decay rate can be expressed as a decay constant or as a half-life.