Search results
Results From The WOW.Com Content Network
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
For a square N×N matrix A n,m = A(n,m), in-place transposition is easy because all of the cycles have length 1 (the diagonals A n,n) or length 2 (the upper triangle is swapped with the lower triangle). Pseudocode to accomplish this (assuming zero-based array indices) is: for n = 0 to N - 1 for m = n + 1 to N swap A(n,m) with A(m,n)
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.
In computer algorithms, block swap algorithms swap two regions of elements of an array.It is simple to swap two non-overlapping regions of an array of equal size. However, it is not simple to swap two non-overlapping regions of an array in-place that are next to each other, but are of unequal sizes (such swapping is equivalent to array rotation).
The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.
This representation for multi-dimensional arrays is quite prevalent in C and C++ software. However, C and C++ will use a linear indexing formula for multi-dimensional arrays that are declared with compile time constant size, e.g. by int A [10][20] or int A [m][n], instead of the traditional int ** A. [8] The C99 standard introduced Variable ...
In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions or, more efficiently, by removing the dimensions attribute of a matrix A with dim(A) <- NULL.
c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also ...