Search results
Results From The WOW.Com Content Network
In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation , for example, is a stable partial differential equation because small perturbations of initial data lead to small variations in temperature ...
This analogy with mechanical equilibrium motivates the terminology of stability and instability. In mathematics, and especially algebraic geometry, stability is a notion which characterises when a geometric object, for example a point, an algebraic variety, a vector bundle, or a sheaf, has some desirable properties for the purpose of ...
While a system of 3 bodies interacting gravitationally is chaotic, a system of 3 bodies interacting elastically is not. [clarification needed] There is no general closed-form solution to the three-body problem. [1] In other words, it does not have a general solution that can be expressed in terms of a finite number of standard mathematical ...
A ball located at this point, ball 3, is in equilibrium but unstable; the slightest disturbance will cause it to move to one of the stable points. Light switch, a bistable mechanism. In a dynamical system, bistability means the system has two stable equilibrium states. [1] A bistable structure can be resting in either of two states.
Stability generally increases to the left of the diagram. [1] Some sink, source or node are equilibrium points. 2-dimensional case refers to Phase plane. In mathematics, an autonomous system or autonomous differential equation is a system of ordinary differential equations which does not explicitly depend on the independent variable.
The first solution to this problem was provided by Freeman Dyson and Andrew Lenard in 1967–1968, [1] [2] but a shorter and more conceptual proof was found later by Elliott Lieb and Walter Thirring in 1975 using the Lieb–Thirring inequality. [3] The stability of matter is partly due to the uncertainty principle and the Pauli exclusion ...
Within mathematics regarding differential equations, L-stability is a special case of A-stability, a property of Runge–Kutta methods for solving ordinary differential equations.
In the control system theory, the Routh–Hurwitz stability criterion is a mathematical test that is a necessary and sufficient condition for the stability of a linear time-invariant (LTI) dynamical system or control system. A stable system is one whose output signal is bounded; the position, velocity or energy do not increase to infinity as ...