When.com Web Search

  1. Ad

    related to: sampling distribution of an estimator in ml means definition of blood flow

Search results

  1. Results From The WOW.Com Content Network
  2. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    (The sample mean need not be a consistent estimator for any population mean, because no mean needs to exist for a heavy-tailed distribution.) A well-defined and robust statistic for the central tendency is the sample median, which is consistent and median-unbiased for the population median.

  3. Fick principle - Wikipedia

    en.wikipedia.org/wiki/Fick_principle

    The Fick principle states that blood flow to an organ can be calculated using a marker substance if the following information is known: Amount of marker substance taken up by the organ per unit time; Concentration of marker substance in arterial blood supplying the organ; Concentration of marker substance in venous blood leaving the organ

  4. Minimax estimator - Wikipedia

    en.wikipedia.org/wiki/Minimax_estimator

    The risk is constant, but the ML estimator is actually not a Bayes estimator, so the Corollary of Theorem 1 does not apply. However, the ML estimator is the limit of the Bayes estimators with respect to the prior sequence π n ∼ N ( 0 , n σ 2 ) {\displaystyle \pi _{n}\sim N(0,n\sigma ^{2})\,\!} , and, hence, indeed minimax according to ...

  5. Sampling distribution - Wikipedia

    en.wikipedia.org/wiki/Sampling_distribution

    In statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic.For an arbitrarily large number of samples where each sample, involving multiple observations (data points), is separately used to compute one value of a statistic (for example, the sample mean or sample variance) per sample, the sampling distribution is ...

  6. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    Sample size determination or estimation is the act of choosing the number of observations or replicates to include in a statistical sample.The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample.

  7. Estimation theory - Wikipedia

    en.wikipedia.org/wiki/Estimation_theory

    Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data.

  8. Efficiency (statistics) - Wikipedia

    en.wikipedia.org/wiki/Efficiency_(statistics)

    This is one of the motivations of robust statistics – an estimator such as the sample mean is an efficient estimator of the population mean of a normal distribution, for example, but can be an inefficient estimator of a mixture distribution of two normal distributions with the same mean and different variances.

  9. M-estimator - Wikipedia

    en.wikipedia.org/wiki/M-estimator

    Such an estimator is not necessarily an M-estimator of ρ-type, but if ρ has a continuous first derivative with respect to , then a necessary condition for an M-estimator of ψ-type to be an M-estimator of ρ-type is (,) = (,). The previous definitions can easily be extended to finite samples.