Search results
Results From The WOW.Com Content Network
End moraine size and shape are determined by whether the glacier is advancing, receding or at equilibrium. The longer the terminus of the glacier stays in one place, the more debris accumulate in the moraine. There are two types of end moraines: terminal and recessional. Terminal moraines mark the maximum advance of the glacier.
A terminal moraine, also called an end moraine, is a type of moraine that forms at the terminal (edge) of a glacier, marking its maximum advance. At this point, debris that has accumulated by plucking and abrasion, has been pushed by the front edge of the ice, is driven no further and instead is deposited in an unsorted pile of sediment.
The left lung is divided into two lobes, an upper and a lower lobe, by the oblique fissure, which extends from the costal to the mediastinal surface of the lung both above and below the hilum. [1] The left lung, unlike the right, does not have a middle lobe, though it does have a homologous feature, a projection of the upper lobe termed the ...
A recessional moraine is a ridge of deposited debris that occurs when the glacier is stationary for an extended length of time. [27] This occurs when a glacier meaning the glacier is in equilibrium or has halted during retreat . The occurrence of end moraines can be useful for determining a pattern of advance, retreat, and equilibrium of a ...
Lateral (from Latin lateralis 'to the side') describes something to the sides of an animal, as in "left lateral" and "right lateral". Medial (from Latin medius 'middle') describes structures close to the midline, [ 2 ] or closer to the midline than another structure.
Moraine: Built up mound of glacial till along a spot on the glacier. Feature can be terminal (at the end of a glacier, showing how far the glacier extended), lateral (along the sides of a glacier), or medial (formed by the merger of lateral moraines from contributory glaciers). Types: Pulju, Rogen, Sevetti, terminal, Veiki
The pleurae (sg.: pleura) [1] are the two flattened closed sacs filled with pleural fluid, each ensheathing each lung and lining their surrounding tissues, locally appearing as two opposing layers of serous membrane separating the lungs from the mediastinum, the inside surfaces of the surrounding chest walls and the diaphragm. Although wrapped ...
Alveolar pressure (PA) at end expiration is equal to atmospheric pressure (0 cm H 2 O differential pressure, at zero flow), plus or minus 2 cm H 2 O (1.5 mmHg) throughout the lung. On the other hand, gravity causes a gradient in blood pressure between the top and bottom of the lung of 20 mmHg in the erect position (roughly half of that in the ...