Search results
Results From The WOW.Com Content Network
Detonation (from Latin detonare 'to thunder down/forth') [1] is a type of combustion involving a supersonic exothermic front accelerating through a medium that eventually drives a shock front propagating directly in front of it.
During the Attack of Pearl Harbor, the USS Arizona was struck with an armor-piercing bomb which penetrated the upper deck and stopped inside the forward magazine. The bomb triggered an explosion which was powerful enough to cut the Arizona in half and is considered a sympathetic detonation as there was an apparent delay between the detonation of the bomb and the contents of the forward magazine.
David Chapman [3] and Émile Jouguet [4] originally (c. 1900) stated the condition for an infinitesimally thin detonation. A physical interpretation of the condition is usually based on the later modelling (c. 1943) by Yakov Borisovich Zel'dovich, [5] John von Neumann, [6] and Werner Döring [7] (the so-called ZND detonation model).
As explained above, a deflagration is a subsonic reaction, whereas a detonation is a supersonic (greater than the sound speed of the material) reaction. Distinguishing between a deflagration or a detonation can be difficult to impossible to the casual observer.
The detonation velocity values presented here are typically for the highest practical density which maximizes achievable detonation velocity. [ 1 ] The velocity of detonation is an important indicator for overall energy and power of detonation, and in particular for the brisance or shattering effect of an explosive which is due to the ...
The phenomenon is exploited in pulse detonation engines, because a detonation produces a more efficient combustion of the reactants than a deflagration does, i.e. giving a higher yields. Such engines typically employ a Shchelkin spiral in the combustion chamber to facilitate the deflagration to detonation transition. [2] [3]
A blast injury is a complex type of physical trauma resulting from direct or indirect exposure to an explosion. [1] Blast injuries occur with the detonation of high-order explosives as well as the deflagration of low order explosives. These injuries are compounded when the explosion occurs in a confined space.
A blast wave reflecting from a surface and forming a mach stem. The air burst is usually 100 to 1,000 m (330 to 3,280 ft) above the hypocenter to allow the shockwave of the fission or fusion driven explosion to bounce off the ground and back into itself, combining two wave fronts and creating a shockwave that is more forceful than the one resulting from a detonation at ground level.