Search results
Results From The WOW.Com Content Network
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula.
def – define or definition. deg – degree of a polynomial, or other recursively-defined objects such as well-formed formulas. (Also written as ∂.) del – del, a differential operator. (Also written as.) det – determinant of a matrix or linear transformation. DFT – discrete Fourier transform.
In applied fields the word "tight" is often used with the same meaning. [2] smooth Smoothness is a concept which mathematics has endowed with many meanings, from simple differentiability to infinite differentiability to analyticity, and still others which are more complicated. Each such usage attempts to invoke the physically intuitive notion ...
The convolution of and is written , denoting the operator with the symbol . [B] It is defined as the integral of the product of the two functions after one is reflected about the y-axis and shifted.
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
Venn diagram of . In logic, mathematics and linguistics, and is the truth-functional operator of conjunction or logical conjunction.The logical connective of this operator is typically represented as [1] or & or (prefix) or or [2] in which is the most modern and widely used.
Concoction is the process of preparing a medicine, food or other substance out of many ingredients, and also the result of such a process. Historically, the word referred to digestion , as conceived by Aristotle who theorized that this was the result of the heat of the body acting upon the material, causing it to mature and ripen.
The consequence of these features is that a mathematical text is generally not understandable without some prerequisite knowledge. For example, the sentence "a free module is a module that has a basis" is perfectly correct, although it appears only as a grammatically correct nonsense, when one does not know the definitions of basis, module, and free module.