Search results
Results From The WOW.Com Content Network
are arranged around the chiral center carbon atom. With the hydrogen atom away from the viewer, if the arrangement of the CO→R→N groups around the carbon atom as center is counter-clockwise, then it is the L form. [14] If the arrangement is clockwise, it is the D form. As usual, if the molecule itself is oriented differently, for example ...
A chirality center (chiral center) is a type of stereocenter. A chirality center is defined as an atom holding a set of four different ligands (atoms or groups of atoms) in a spatial arrangement which is non-superposable on its mirror image. Chirality centers must be sp 3 hybridized, meaning that a chirality center can only have single bonds. [5]
Chirality (/ k aɪ ˈ r æ l ɪ t i /) is a property of asymmetry important in several branches of science. The word chirality is derived from the Greek χείρ (kheir), "hand", a familiar chiral object. An object or a system is chiral if it is distinguishable from its mirror image; that is, it cannot be superposed (not to be confused with ...
Stereochemistry, a subdiscipline of chemistry, studies the spatial arrangement of atoms that form the structure of molecules and their manipulation. [1] The study of stereochemistry focuses on the relationships between stereoisomers, which are defined as having the same molecular formula and sequence of bonded atoms (constitution) but differing in the geometric positioning of the atoms in space.
Chiral molecules will usually have a stereogenic element from which chirality arises. The most common type of stereogenic element is a stereogenic center, or stereocenter. In the case of organic compounds, stereocenters most frequently take the form of a carbon atom with four distinct (different) groups attached to it in a tetrahedral geometry.
A planar chiral derivative of ferrocene, used for kinetic resolution of some racemic secondary alcohols [1]. This term is used in chemistry contexts, [2] e.g., for a chiral molecule lacking an asymmetric carbon atom, but possessing two non-coplanar rings that are each dissymmetric and which cannot easily rotate about the chemical bond connecting them: 2,2'-dimethylbiphenyl is perhaps the ...
Tacticity (from Greek: τακτικός, romanized: taktikos, "relating to arrangement or order") is the relative stereochemistry of adjacent chiral centers within a macromolecule. [1] [better source needed] The practical significance of tacticity rests on the effects on the physical properties of the polymer.
Two examples of stereocenters. The lowest substituent (number 4) is shown only by a wavy line, and is assumed to be behind the rest of the molecule. Both centers shown are S isomers. A chiral sp 3 hybridized isomer contains four different substituents. All four substituents are assigned prorites based on its atomic numbers.