Search results
Results From The WOW.Com Content Network
In physics and mathematics, a random field is a random function over an arbitrary domain (usually a multi-dimensional space such as ). That is, it is a function f ( x ) {\displaystyle f(x)} that takes on a random value at each point x ∈ R n {\displaystyle x\in \mathbb {R} ^{n}} (or some other domain).
The prototypical Markov random field is the Ising model; indeed, the Markov random field was introduced as the general setting for the Ising model. [2] In the domain of artificial intelligence, a Markov random field is used to model various low- to mid-level tasks in image processing and computer vision. [3]
Random fields are indexed sets of random variables; a continuous random field is a random field that has a set of functions as its index set. In particular, it is often mathematically convenient to take a continuous random field to have a Schwartz space of functions as its index set, in which case the continuous random field is a tempered ...
Conditional random fields (CRFs) are a class of statistical modeling methods often applied in pattern recognition and machine learning and used for structured prediction. Whereas a classifier predicts a label for a single sample without considering "neighbouring" samples, a CRF can take context into account.
A random field is a collection of random variables indexed by a -dimensional Euclidean space or some manifold. In general, a random field can be considered an example of a stochastic or random process, where the index set is not necessarily a subset of the real line. [30]
One way of constructing a GRF is by assuming that the field is the sum of a large number of plane, cylindrical or spherical waves with uniformly distributed random phase. Where applicable, the central limit theorem dictates that at any point, the sum of these individual plane-wave contributions will exhibit a Gaussian distribution.
A Markov random field may be visualized as a field or graph of random variables, where the distribution of each random variable depends on the neighboring variables with which it is connected. More specifically, the joint distribution for any random variable in the graph can be computed as the product of the "clique potentials" of all the ...
In the domain of physics and probability, the filters, random fields, and maximum entropy (FRAME) model [1] [2] is a Markov random field model (or a Gibbs distribution) of stationary spatial processes, in which the energy function is the sum of translation-invariant potential functions that are one-dimensional non-linear transformations of linear filter responses.