When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Relativistic electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Relativistic_electromagnetism

    Faraday's law of induction was suggestive to Einstein when he wrote in 1905 about the "reciprocal electrodynamic action of a magnet and a conductor". [ 15 ] Nevertheless, the aspiration, reflected in references for this article, is for an analytic geometry of spacetime and charges providing a deductive route to forces and currents in practice.

  3. Electromagnetic four-potential - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_four-potential

    An electromagnetic four-potential is a relativistic vector function from which the electromagnetic field can be derived. It combines both an electric scalar potential and a magnetic vector potential into a single four-vector.

  4. Classical electromagnetism and special relativity - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism...

    The Feynman Lectures on Physics (vol. 2, ch. 13–6) uses this method to derive the magnetic force on charge in parallel motion next to a current-carrying wire. See also Haskell [8] and Landau. [9] If the charge instead moves perpendicular to a current-carrying wire, electrostatics cannot be used to derive the magnetic force.

  5. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    The law was first [1] formulated by Joseph-Louis Lagrange in 1773, [2] followed by Carl Friedrich Gauss in 1835, [3] both in the context of the attraction of ellipsoids. It is one of Maxwell's equations, which forms the basis of classical electrodynamics. [note 1] Gauss's law can be used to derive Coulomb's law, [4] and vice versa.

  6. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    A separate law of nature, the Lorentz force law, describes how the electric and magnetic fields act on charged particles and currents. By convention, a version of this law in the original equations by Maxwell is no longer included. The vector calculus formalism below, the work of Oliver Heaviside, [6] [7] has become standard.

  7. Electrostatics - Wikipedia

    en.wikipedia.org/wiki/Electrostatics

    Electrostatics is a branch of physics that studies slow-moving or stationary electric charges. Since classical times , it has been known that some materials, such as amber , attract lightweight particles after rubbing .

  8. Biot–Savart law - Wikipedia

    en.wikipedia.org/wiki/Biot–Savart_law

    The Biot–Savart law [4]: Sec 5-2-1 is used for computing the resultant magnetic flux density B at position r in 3D-space generated by a filamentary current I (for example due to a wire). A steady (or stationary) current is a continual flow of charges which does not change with time and the charge neither accumulates nor depletes at any point.

  9. Electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Electromagnetism

    Formulas for physical laws of electromagnetism (such as Maxwell's equations) need to be adjusted depending on what system of units one uses. This is because there is no one-to-one correspondence between electromagnetic units in SI and those in CGS, as is the case for mechanical units.