Search results
Results From The WOW.Com Content Network
Hysteresivity derives from “hysteresis”, meaning “lag”. It is the tendency to react slowly to an outside force, or to not return completely to its original state. Whereas the area within a hysteresis loop represents energy dissipated to heat and is an extensive quantity with units of energy, the hysteresivity represents the fraction of the elastic energy that is lost to heat, and is an ...
The curves form a hysteresis loop. Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of the moment often form a loop or hysteresis curve, where there are ...
English: R. V. Lapshin, Model of hysteresis loop, Triple smooth self-crossing hysteresis loop of the Classical type formed as a result of “squeezing” by the phase shift dAlpha2
In control theory, a bang–bang controller (hysteresis, 2 step or on–off controller), is a feedback controller that switches abruptly between two states. These controllers may be realized in terms of any element that provides hysteresis. They are often used to control a plant that accepts a binary input, for example a furnace that is either ...
This page was last edited on 17 February 2006, at 04:05 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Hysteresis is an important concept in alternative stable state theory. In this ecological context, hysteresis refers to the existence of different stable states under the same variables or parameters. Hysteresis can be explained by "path-dependency", in which the equilibrium point for the trajectory of "A → B" is different from for "B → A ...
In structural engineering, the Bouc–Wen model of hysteresis is a hysteretic model typically employed to describe non-linear hysteretic systems. It was introduced by Robert Bouc [1] [2] and extended by Yi-Kwei Wen, [3] who demonstrated its versatility by producing a variety of hysteretic patterns. This model is able to capture, in analytical ...
Hysteresis is observed in the stress–strain curve, with the area of the loop being equal to the energy lost during the loading cycle. Since viscosity is the resistance to thermally activated plastic deformation, a viscous material will lose energy through a loading cycle.