When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    An identity matrix of any size, or any multiple of it is a diagonal matrix called a scalar matrix, for example, []. In geometry , a diagonal matrix may be used as a scaling matrix , since matrix multiplication with it results in changing scale (size) and possibly also shape ; only a scalar matrix results in uniform change in scale.

  3. Scaling (geometry) - Wikipedia

    en.wikipedia.org/wiki/Scaling_(geometry)

    A special case is a diagonal matrix, with arbitrary numbers ,, … along the diagonal: the axes of scaling are then the coordinate axes, and the transformation scales along each axis by the factor . In uniform scaling with a non-zero scale factor, all non-zero vectors retain their direction (as seen from the origin), or all have the direction ...

  4. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    As a special case, this includes: if some column is such that all its entries are zero, then the determinant of that matrix is 0. Adding a scalar multiple of one column to another column does not change the value of the determinant. This is a consequence of multilinearity and being alternative: by multilinearity the determinant changes by a ...

  5. Inverse-Wishart distribution - Wikipedia

    en.wikipedia.org/wiki/Inverse-Wishart_distribution

    The Inverse Wishart distribution is a special case of the inverse matrix gamma distribution when the shape parameter = and the scale parameter =. Another generalization has been termed the generalized inverse Wishart distribution, G W − 1 {\displaystyle {\mathcal {GW}}^{-1}} .

  6. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    It is called an identity matrix because multiplication with it leaves a matrix unchanged: = = for any m-by-n matrix A. A nonzero scalar multiple of an identity matrix is called a scalar matrix. If the matrix entries come from a field, the scalar matrices form a group, under matrix multiplication, that is isomorphic to the multiplicative group ...

  7. Scalar (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Scalar_(mathematics)

    A scalar is an element of a field which is used to define a vector space.In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector.

  8. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  9. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Applicable to: m-by-n matrix A. Unit-Scale-Invariant Singular-Value Decomposition: =, where S is a unique nonnegative diagonal matrix of scale-invariant singular values, U and V are unitary matrices, is the conjugate transpose of V, and positive diagonal matrices D and E.